共查询到20条相似文献,搜索用时 0 毫秒
1.
带芒草属物种新型高分子量谷蛋白亚基的鉴定 总被引:3,自引:0,他引:3
采用SDSPAGE方法对牧草带芒草属3个种8份材料的高分子量谷蛋白进行了检测和鉴定。结果显示,带芒草物种具有的高分子量谷蛋白亚基与普通小麦中发现的不一样,其迁移率存在较大差异。其中,x型亚基均比Dx2亚基迁移率小或接近,y型亚基均比Dx12亚基迁移率大。8份材料中共发现了4种x型亚基新类型(Tax1,Tax2,Tax3和Tax4),5种y型亚基新类型(Tay1,Tay2,Tay3,Tay4和Tay5)和6种亚基组合类型(Tax1+Tay3,Tax3+Tay2,Tax4+Tay1,Tax1+Tay1,Tax2+Tay5,Tax4+Tay2),该项研究结果揭示了带芒草属植物可能具有与普通小麦类似的高分子量谷蛋白亚基,这些亚基在小麦品质遗传改良中具有潜在的利用价值。 相似文献
2.
3.
Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. 总被引:12,自引:2,他引:12 下载免费PDF全文
The expression of a wheat genomic clone containing the entire coding sequence of the high molecular weight glutenin subunit 12 gene flanked by 2.6 kilobases of 5' and 1.5 kilobases of 3' sequences has been studied after introduction into tobacco. Seeds of different tobacco plants containing the full-length wheat genomic clone accumulated different amounts of intact high molecular weight glutenin subunit mRNA and of a polypeptide displaying the solubility, molecular weight, and antigenic properties of the high molecular weight glutenin subunit 12. The wheat protein accumulated without obvious degradation products and constituted up to approximately 0.1% of the total tobacco endosperm protein. Restriction fragments corresponding to 2.6 kilobases, 1.4 kilobases, and 433 base pairs of high molecular weight glutenin 5' upstream sequence were fused to the coding sequence of the chloramphenicol acetyltransferase (CAT) gene in the vector polyCATter and transferred into tobacco. Chloramphenicol acetyltransferase enzyme activity was detected only in the seed endosperm tissue of the transformed plants. It was detected in tobacco seeds 8 days after anthesis and persisted until seed maturity. It is concluded that 433 base pairs of high molecular weight glutenin upstream sequence are sufficient to confer endosperm-specific expression of this monocot gene in the dicot tobacco. 相似文献
4.
Liu S Chao S Anderson JA 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2008,118(1):177-183
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining
the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several
previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant
and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective
of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded
at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific
co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known
HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as
expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers,
UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The
16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes
perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes. 相似文献
5.
6.
We describe the sequence of a gene encoding a high molecular weight glutenin subunit (HMW-GS) expressed in the endosperm of
the wheat relative Australopyrum retrofractum. Although the subunit has a similar primary structure to that HMW-GS genes present in other Triticeae species, its N-terminal
domain is shorter, its central repetitive domain includes a unique dodecameric motif, and its C-terminal domain contain an
extra cysteine residue. A phylogenetic analysis showed that the Glu-W1 gene is neither a true x- nor a true y-type subunit, although it is more closely related to the y-type genes present in the
K and E genomes than to any other published HMW-GS gene. All these results indicated that this novel subunit may undergo a
special evolutionary process different from other Triticeae species. A flour supplementation experiment showed that the Glu-W1 subunit has a negative effect on dough quality, which might be the result of interaction between the two closely placed cysteine
residues in the C-terminal region. 相似文献
7.
部分小麦高分子量谷蛋白亚基组成分析 总被引:6,自引:0,他引:6
利用十二烷基硫酸钠聚丙烯胺凝胶电泳(SDS-PAGE)分析了85个小麦材料的高分子量谷蛋白亚基的构成,其结果表明:(1)目前生产中应用的优质小麦品种,大部分具有1A上的优质亚基1,1B上的14+15/17+18或1D上的5+10,个别品种还同时聚合有1A,1B,1D上的优质亚基;(2)在所分析的28个八倍体小偃麦中,多数材料含有1,2^*和5+10等优质亚基;(3)在本实验室创造的材料中,来源于中间偃麦草和普通小麦杂交的后代材料中大部分具有14+15亚基。此外,个别种质材料还含有Payne亚基命名系统中未命名的一些稀有的高分子量谷蛋白亚基。 相似文献
8.
In order to reveal the evolution of Glu-E1 loci of Lophopyrum elongatum (Host) A. L?ve and find novel alleles for wheat quality breeding, four Glu-1 alleles were isolated and characterized via genomic PCR, from this wheat-related species. Of them, 1Ex2 and 1Ey2 were novel alleles, which differ from all the previously known HMW-GS alleles of L. elongatum. Two alleles 1Ex1 and 1Ey2, which contain intact open reading frames, have been successfully expressed in E. coli. The expressed proteins showed similar electrophoresis mobility with the candidate high molecular weight glutenin subunit bands found in seeds. Sequence alignment indicated that proteins encoded by the novel alleles showed similar primary structure with those of wheat and other wheat-related grasses, however, they possess some unique modifications in their own structure. For example, the number of residues in the N-terminal domain is different from those of wheat, an irregular tripeptide present between two nonapeptide motifs and a unique cysteine position in the repetitive region. Phylogenetic analyses using N-terminal conserved sequences showed that 1Ex2 was homologous to those from the D genome; but 1Ey2 was homologous to a y-type allele 1Ky from the K genome. The evolution relationship of Glu-E1 alleles and the possible utilization of the alleles in wheat breeding are discussed. 相似文献
9.
Angelo M. Facchiano Giovanni Colonna Emilio Chiosi Gennaro Illiano Annamaria Spina Domenico Lafiandra Francesco Buonocore 《Plant Physiology and Biochemistry》1999,37(12):931
We have investigated the in vitro phosphorylation of high molecular weight glutenin subunits (HMW-GS), a group of non-soluble proteins present in wheat endosperm. Computer aided searches of potential biological sites in the known sequences of these proteins have evidenced the presence of sequence motifs specific for protein kinase C (PKC), calcium-dependent protein kinase from wheat, casein kinase II, tyrosine protein kinase and glycosylation. We have demonstrated that subunit 1Bx7 is a substrate of a partially purified PKC from rat brain. Further experiments have shown that this subunit is phosphorylated by an endogenous protein kinase activity found in wheat flour. These preliminary results are important for the possible implications on the structure-function relationships of these proteins and could probably suggest, for the first time, a potential physiological role in particular situations for some HMW-GS. 相似文献
10.
Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs 总被引:4,自引:0,他引:4
Radovanovic N. Cloutier S. 《Molecular breeding : new strategies in plant improvement》2003,12(1):51-59
Molecular markers based on DNA sequence variations of the coding and/or promoter regions of the wheat (Triticum aestivum L.) HMW glutenin genes located at the Glu-1 loci were developed. Markers characteristic of alleles Glu-A1-1a (encoding Ax1 subunit) and Glu-A1-1c (encoding Ax2* subunit) at the Glu-A1 locus, alleles Glu-B1ak (encoding Bx7* subunit) and Glu-B1al for overexpressed Bx7 subunit at the Glu-B1 locus and alleles Glu-D1-1a (encoding Dx2 subunit) and Glu-D1-1d (encoding Dx5 subunit) at the Glu-D1 locus were tested using genomic DNA of haploid leaf tissue. A method for simultaneously extracting DNA from 96 haploid leaf tissue pieces is described. Two of the developed markers were dominant and two were co-dominant. A F1-derived population segregating for all HMW glutenin genes was used to test the validity of the markers and their usefulness in doubled haploid breeding programs. SDS-PAGE analysis of seed storage protein was performed on seeds from the doubled haploid lines. A total of 299 lines were tested with the DNA markers on the haploid tissue and validated by protein analysis of the corresponding DH seeds. PCR markers and SDS-PAGE analysis showed between 2 and 8.5% discrepancies depending on the marker. Applications of DNA markers for gene-assisted-selection of haploid tissue and use in breeding programs are discussed. Advantages and disadvantages of dominant and co-dominant markers are outlined. 相似文献
11.
Lina Kong Yu Liang Lumin Qin Lei Sun Guangmin Xia Shuwei Liu 《Development genes and evolution》2014,224(4-6):189-196
The Ns genome of the genus Psathyrostachys possesses superior traits useful for wheat improvement. However, very little is known about the high molecular weight (HMW) subunits of glutenin encoded by the Ns genome. In this paper, we report the isolation of four alleles of HMW glutenin subunit gene from Psathyrostachys juncea. Sequence alignment data shows the four alleles have similar primary structure with those in wheat and other wheat-related grasses, with some unique modifications. All four sequences more closely resemble y-type, rather than x-type, glutenins. However, our results show three of the subunits (1Ns2-4) contain an extra glutamine residue in the N-terminal region not found on typical y-type subunits, as well as the x-type subunit specific sequence LAAQLPAMCRL. These three subunits likely represent an intermediate state in the divergence between x- and y-type subunits. Results also indicate that the Ns genome is more closely related to the St genome of Pseudoroegneria than any other Triticeae genomes. 相似文献
12.
Homology modeling and molecular dynamics simulations of the N-terminal domain of wheat high molecular weight glutenin subunit 10 下载免费PDF全文
Cazalis R Aussenac T Rhazi L Marin A Gibrat JF 《Protein science : a publication of the Protein Society》2003,12(1):34-43
High molecular weight glutenin subunits (HMW-GS) are of a particular interest because of their biomechanical properties, which are important in many food systems such as breadmaking. Using fold-recognition techniques, we identified a fold compatible with the N-terminal domain of HMW-GS Dy10. This fold corresponds to the one adopted by proteins belonging to the cereal inhibitor family. Starting from three known protein structures of this family as templates, we built three models for the N-terminal domain of HMW-GS Dy10. We analyzed these models, and we propose a number of hypotheses regarding the N-terminal domain properties that can be tested experimentally. In particular, we discuss two possible ways of interaction between the N-terminal domains of the y-type HMW glutenin subunits. The first way consists in the creation of interchain disulfide bridges. According to our models, we propose two plausible scenarios: (1) the existence of an intrachain disulfide bridge between cysteines 22 and 44, leaving the three other cysteines free of engaging in intermolecular bonds; and (2) the creation of two intrachain disulfide bridges (involving cysteines 22-44 and cysteines 10-55), leaving a single cysteine (45) for creating an intermolecular disulfide bridge. We discuss these scenarios in relation to contradictory experimental results. The second way, although less likely, is nevertheless worth considering. There might exist a possibility for the N-terminal domain of Dy10, Nt-Dy10, to create oligomers, because homologous cereal inhibitor proteins are known to exist as monomers, homodimers, and heterooligomers. We also discuss, in relation to the function of the cereal inhibitor proteins, the possibility that this N-terminal domain has retained similar inhibitory functions. 相似文献
13.
Wellner N Marsh JT Savage AW Halford NG Shewry PR Clare Mills EN Belton PS 《Biomacromolecules》2006,7(4):1096-1103
A strategy has been developed to create repetitive peptides incorporating substitutions in the PGQGQQGYYPTSLQQ consensus repeat sequence of high molecular weight subunits in order to investigate natural sequence variations in elastomeric proteins of wheat gluten. After introduction of glutamic and aspartic acid residues, the peptide behaved similarly to the unmodified form at low pH, but became readily water soluble at pH > 6. Substitution of Gln for Leu at position 13 resulted in only small changes to the secondary structure of the water-insoluble peptides, as did Tyr8His and Thr11Ala. The effects of proline substitutions depended on their location: Leu13Pro substitution had little effect on solubility and structure, but Gln6Pro substitution resulted in dramatic changes. Peptides with two Gln6Pro substitutions had similar properties to the water-insoluble parental peptide, but those with 6 or 10 substitutions were readily soluble. The results indicated that specific sequences influence noncovalent intermolecular interactions in wheat gluten proteins. 相似文献
14.
高分子量谷蛋白亚基(HMW-GS,high molecular weight glutenin subunits)是小麦子粒贮藏蛋白的重要组成成分,其组成、搭配、表达水平及含量决定面团弹性和面包加工品质。本文主要介绍了小麦HMW-GS编码基因的克隆、分子特征、分子标记开发及其在小麦育种中的应用,并综述了不同HMW-GS与面粉加工品质之间的关系,以及HMW-GS基因遗传转化、微量配粉和突变体培育等方面的研究进展,分析了目前研究中存在的主要问题,认为通过分子标记辅助选择和转基因技术聚合优质亚基,培育优质面包小麦品种和明确各个HMW-GS基因的品质效应是今后的研究重点。 相似文献
15.
小麦高分子量谷蛋白亚基对加工品质影响的效应分析 总被引:28,自引:2,他引:28
分析了 2 50份小麦材料的高分子量谷蛋白亚基 (HMW- GS)组成以及其中 66份材料的加工品质及面条制作品质。回归分析表明 :HMW- GS与 1 0种加工品质性状均有显著的线性关系。不同亚基对综合品质效应的得分大小依次为 :Glu- Al,1 >2 * >null;Glu- Bl,1 4 +1 5>7+8>1 7+1 8>>7+9;Glu- Dl,5+1 0 >>2 +1 2 >4+1 2。不同基因位点对品质的贡献大小顺序为 :Glu- Dl>Glu- Al>Glu- Bl。首次提出了 HMW- GS综合品质评分系统 相似文献
16.
17.
P J Bechtel 《The Journal of biological chemistry》1979,254(6):1755-1758
A large polypeptide having a molecular weight of 240,000 as determined by electrophoresis in the presence of sodium dodecyl sulfate has been identified in whole cell homogenates from chick skeletal muscle myoblasts and the rat myoblast L6 cell line. A similar polypeptide was identified in both thigh and breast chicken skeletal muscle, but the latter contained less of this protein per g of tissue. Antibodies made to gizzard filamin (an actin-binding protein having a molecular weight of 240,000) cross-reacted with the partially purified Mr = 240,000 protein from chicken skeletal muscle. With use of the indirect immunofluorescence technique, the filamin antibody localized in the Z-line region of chicken skeletal muscle myofibrils. These results indicate that skeletal muscle contains a filamin-like protein that may form an integral part of the myofibril structure. 相似文献
18.
V. Vallega J. G. Waines 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1987,74(6):706-710
Summary Variation in high molecular weight (HMW) glutenin subunit composition among 167 accessions of dicoccum wheat (Triticum turgidum L. var. dicoccum Schrank) of diverse origins was investigated using one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). A total of 20 alleles were identified, and 9 of them were found to be different from those previously detected by Payne and Lawrence (1983 b) in hexaploid wheat (Triticum aestivum L.). The newly discovered alleles enhance the genetic variability available to improve the industrial quality of wheats and some of them may facilitate basic research on the relationship of industrial quality with HMW glutenin subunit number. The novel variants include a GLU-A1 encoded subunit which has higher molecular mass than any other so far described in tetraploid and hexaploid wheats, and a null GLU-B1 allele. Dicoccums containing neither GLU-A1- nor GLU-B1-encoded subunits were also identified. A comparison of the mean number of HMW glutenin subunits contained in various primitive and modern domesticated wheats of different ploidy levels and the identification of wheats containing no HMW glutenin subunits suggest that the occurrence of null GLU-1 alleles in these species depends on chance rather on an inherent tendency on the part of modern polyploid wheats to suppress the activity of redundant GLU-1 genes. 相似文献
19.
A comparison of the activity of genetic elements from the regulatory region of the Drosophila melanogaster Deformed gene during embryogenesis and adult life reveals important similarities and differences. The 2.7 kb epidermal autoregulatory enhancer (EAE) of the Deformed gene drives expression of a β-galactosidase reporter in unique spatial and temporal patterns in the adult antennae; this pattern is insensitive to temperature effects. The Deformed regulatory region possesses distinct enhancer elements that can direct the expression of a β-galactosidase reporter spatially and temporally. A 120 bp region can reproduce the general features of the larger EAE fragment. The Deformed binding site is essential for temporal and spatial expression of β-galactosidase during embryogenesis but is not required in the adult. 相似文献