首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this report, we have compared the changes in the production of tRNA(iMet) (initiator tRNA(Met] and tRNA(Asn), which occur during erythroid differentiation in the Friend erythroleukemia cell. The relative steady-state concentration of these two tRNAs (relative to the total tRNA population) was measured by aminoacylation. The results show that while the relative steady-state concentration of tRNA(iMet) changes very little in the cytoplasmic tRNA population, the relative concentration of tRNA(Asn) decreases during the first two days of differentiation and then undergoes an increase. This difference in the behavior of these two tRNAs is also seen when their relative concentrations in newly synthesized tRNA is examined. When tRNA is labeled with tritiated uridine for 24 h in vivo prior to isolation, the hybridization of this labeled tRNA to filter-bound tRNA genes shows that the relative concentration of tRNA(iMet) in newly synthesized tRNA changes very little, while the relative concentration of newly synthesized tRNA(Asn) again decreases through the first 2 days of differentiation, and then undergoes a smaller increase. Thus, the production of these two tRNAs appears to be independently regulated. Independent regulation of synthesis is also observed when examining the production of these two tRNAs in isolated nuclei. During erythroid differentiation, the relative synthesis of tRNA(iMet) (relative to total nuclear RNA synthesis) remains constant, while the relative synthesis of tRNA(Asn) undergoes periodic increases and decreases in value.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
We have previously reported the ability of a cloned tRNAMeti gene (pt145) to bind tRNAMeti specifically [5]. In this paper, we show that a pBR322 plasmid containing the tRNAAsn gene of Xenopus (pt38 - donated by Stuart Clarkson) will specifically bind to mouse tRNAAsn when total mouse tRNA, extracted from uninduced Friend erythroleukemia cells, is hybridized to the gene probe. One-dimensional electrophoresis of the hybridizing tRNA in 20% polyacrylamide reveals one major band and several small-molecular-weight minor bands. The hybridizing tRNA has been identified as tRNAAsn by partial RNA sequencing and the detection of both the Q base and t6A. The steady-state concentration of tRNAAsn in the uninduced Friend cell was determined by hybridizing tRNA labeled in vitro to pt38. 1% of the total tRNA hybridized, representing 0.017 pg tRNAAsn/cell. The fraction of newly synthesized tRNA representing tRNAAsn or tRNAMeti was also determined by hybridizing tRNA labeled in vivo to either pt38 or pt145, respectively. 0.96% and 0.85% of the tRNA hybridized to pt38 and pt145, respectively.  相似文献   

13.
Initiation of protein synthesis has been studied in the presence of the tetrahydrofolic acid analogues trimethoprim or aminopterin in Bacillus subtilis. This bacterium can grow in the presence of the inhibitors, when the medium is supplemented with the low molecular weight products of tetrahydrofolate-dependent pathways. In an attempt to show whether formylation of initiator tRNA is a prerequisite for the iniation of protein synthesis in procaryotic cells, the amount of N-formylmethionine in tRNA and in protein has been determined. The level of formylation of methionyl-tRNA was found to be 70% in control cells and approximately 2% in inhibitor-treated cells. The content of formyl groups in protein has also been found to be drastically reduced. Trimethoprim or aminopterin did not alter the amount of tRNAMet nor the degree of aminoacylation of tRNAMet in vivo. These results indicate that in B. subtilis inititation of protein synthesis is possible without prior formylation of initiator tRNA.  相似文献   

14.
15.
16.
W E Daniel  M Cohn 《Biochemistry》1976,15(18):3917-3924
The properties of Escherichia coli tRNAMet f1 and tRNAMet f3 that differ by only one base change, m7G to A at position 47, have been compared structurally by proton magnetic resonance and functionally by the aminoacylation reaction. The NMR spectra of the two tRNA species in the region between 0 and 4 ppm below 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) (methyl and methylene region) were the same except for the absence of the lowest field peak at 3.8 ppm in tRNAMet f3, thus unequivocally identifying this resonance at the methyl group of m7G47 of tRNAMet f1. The same resonance disappears in tRNAMet f1 spin-labeled at s4U8 and reappears in the diamagnetic reduced spin-labeled tRNAMet f1 from which the average distance between the spin-label and the methyl protons of m7G is estimated to be less than 15 A. The proximity of m7G47 but not T55 to s4U8 in the structure of E. coli tRNAMet f1 in solution is consistant with the crystallographic model for yeast tRNAPhe. A spectral comparison of the hydrogen-bond regions (11-14 ppm below DSS) of tRNAMet f1 and tRNAMet f3 reveals major shifts of four resonances previously assigned to tertiary hydrogen bonds. Of the four, the one at lowest field (14.8 ppm) had been assigned by chemical modification to the tertiary (s4U8-A14) hydrogen bond and the one at 13.3 ppm had been tentatively assigned to the tertiary hydrogen bond G23-m7G47 of the 13-23-47 triple. A more positive assignment of the G23-m7G47 at 13.3 ppm could be made from the additional evidence that this resonance, which was first observed in the difference spectrum between spin-labeled tRNAMet f1 and its reduced form, is the only one missing in the analogous difference spectrum of tRNAMet f3. At low ionic strength and in the absence of magnesium ions, the differences in the hydrogen-bonded region of the NMR spectra of tRNAMet f1 and tRNAMet f3 are much greater than in the presence of magnesium ions. The optimal magnesium concentration required for maximal initial velocities is also higher for tRNAMet f3 than for tRNAMet f1. The perturbation caused by the spin-label in destabilizing hydrogen bonds in the region between 13 and 14 ppm is greater for tRNAMet f3 than tRNAMet f1 but the distance relations for the hydrogen bonds in the region between 12 and 13 ppm (the major paramagnetic perturbations) are conserved in the two species. The disruption of one hydrogen bond relative to native tRNAMet f1 either by spin-labeling (s4U8-A14) or by substitution of m7G by A in tRNAMet f3 has little effect on the aminoacyl acceptor activity or the velocity of the aminoacylation reaction at optimal magnesium concentration, but the absence of both tertiary hydrogen bonds in the augmented D-helix region in the spin-labeled tRNAMet f3 results in approximately 60% reduction both in acceptance activity and in initial velocity of the aminoacylation reaction.  相似文献   

17.
We have isolated four segments of Drosophila melanogaster DNA that hybridize to homologous initiator tRNAMet. Three of the cloned fragments contain initiator tRNA genes, each of which can be transcribed in vitro. The fourth clone, pPW568, contains an initiator tRNA pseudogene which is not transcribed in vitro by RNA polymerase III. The pseudogene is contained in a 1.15 kb DNA fragment. This fragment has the characteristics of dispersed repetitive DNA and hybridizes in situ to at least 30 sites in the Drosophila genome. The arrangement of the initiator tRNA genes we have isolated, is different to that of other Drosophila tRNA gene families. The initiator tRNA genes are not clustered nor intermingled with other tRNA genes. They occur as single copies within an approximately 415-bp repeat segment, which is separated from other initiator tRNA genes by a mean distance of 17 kb. In situ hybridization to polytene chromosomes localizes these genes to the 61D region of the Drosophila genome. Hybridization analysis of genomic DNA indicates the presence of 8-9 non-allelic initiator tRNA genes in Drosophila melanogaster.  相似文献   

18.
19.
20.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) selectively reduces the synthesis of su+III tRNA from omega 80 psu+III DNA relative to the synthesis of omega 80 RNA in a system in vitro containing DNA and Escherichia coli RNA polymerase holoenzyme as the sole macromolecular components. The response of su+III tRNA synthesis to increasing salt and to temperature in the presence of ppGpp suggests that the nucleotide may reduce the affinity of the enzyme for su+III promoters. The Ki for the selective inhibition of tRNA synthesis by ppGpp is 4 muM in contrast to the value of 150 muM for the inhibition of rRNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号