首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

2.
3.
PurposeThis study evaluated whether RapidPlan based plans (RP plans) created by a single optimization, are usable in volumetric modulated arc therapy (VMAT) for patients with prostate cancer.MethodsWe used 51 previously administered VMAT plans to train a RP model. Thirty RP plans were created by a single optimization without planner intervention during optimization. Differences between RP plans and clinical manual optimization (CMO) plans created by an experienced planner for the same patients were analyzed (Wilcoxon tests) in terms of homogeneity index (HI), conformation number (CN), D95%, and D2% to planning target volume (PTV), mean dose, V50Gy, V70Gy, V75Gy, and V78Gy to rectum and bladder, monitor unit (MU), and multi-leaf collimator (MLC) sequence complexity.ResultsRP and CMO values for PTV D95%, PTV D2%, HI, and CN were significantly similar (p < 0.05 for all). RP mean dose, V50Gy, and V70Gy to rectum were superior or comparable to CMO values; RP V75Gy and V78Gy were higher than in CMO plans (p < 0.05). RP bladder dose-volume parameter values (except V78Gy) were lower than in CMO plans (p < 0.05). MU values were RP: 730 ± 55 MU and CMO: 580 ± 37 MU (p < 0.05); and MLC sequence complexity scores were RP: 0.25 ± 0.02 and CMO: 0.35 ± 0.03 (p < 0.05).ConclusionsRP plans created by a single optimization were clinically acceptable in VMAT for patient with prostate cancer. Our simple model could reduce optimization time, independently of planner’s skill and knowledge.  相似文献   

4.
ObjectiveTo investigate the potential of Particle Swarm Optimization (PSO) for fully automatic VMAT radiotherapy (RT) treatment planning.Material and MethodsIn PSO a solution space of planning constraints is searched for the best possible RT plan in an iterative, statistical method, optimizing a population of candidate solutions. To identify the best candidate solution and for final evaluation a plan quality score (PQS), based on dose volume histogram (DVH) parameters, was introduced.Automatic PSO-based RT planning was used for N = 10 postoperative prostate cancer cases, retrospectively taken from our clinical database, with a prescribed dose of EUD = 66 Gy in addition to two constraints for rectum and one for bladder. Resulting PSO-based plans were compared dosimetrically to manually generated VMAT plans.ResultsPSO successfully proposed treatment plans comparable to manually optimized ones in 9/10 cases. The median (range) PTV EUD was 65.4 Gy (64.7–66.0) for manual and 65.3 Gy (62.5–65.5) for PSO plans, respectively. However PSO plans achieved significantly lower doses in rectum D2% 67.0 Gy (66.5–67.5) vs. 66.1 Gy (64.7–66.5, p = 0.016). All other evaluated parameters (PTV D98% and D2%, rectum V40Gy and V60Gy, bladder D2% and V60Gy) were comparable in both plans. Manual plans had lower PQS compared to PSO plans with −0.82 (−16.43–1.08) vs. 0.91 (−5.98–6.25).ConclusionPSO allows for fully automatic generation of VMAT plans with plan quality comparable to manually optimized plans. However, before clinical implementation further research is needed concerning further adaptation of PSO-specific parameters and the refinement of the PQS.  相似文献   

5.
PurposeRadiation therapy plans are assessed using dose volume metrics derived from clinical toxicity and outcome data. In this study, plans for patients with locally advanced non-small cell lung cancer (LA-NSCLC) are examined in the context of the implementation of the Acuros XB (AXB) dose calculation algorithm focussing on the impact on common metrics. Methods: Volumetric modulated arc therapy (VMAT) plans were generated for twenty patients, using the Analytical Anisotropic Algorithm (AAA) and recalculated with AXB for both dose to water (Dw) and dose to medium (Dm). Standard dose volume histogram (DVH) metrics for both targets and organs-at-risk (OARs) were extracted, in addition to tumour control probability (TCP) for targets. Results: Mean dose to the planning target volume (PTV) was not clinically different between the algorithms (within ±1.1 Gy) but differences were seen in the minimum dose, D99% and D98% as well as for conformity and homogeneity metrics. A difference in TCP was seen for AXBDm plans versus both AXBDw and AAA plans. No clinically relevant differences were seen in the lung metrics. For point doses to spinal cord and oesophagus, the AXBDm values were lower than AXBDw, by up to 1.0 Gy. Conclusion: Normalisation of plans to the mean/median dose to the target does not need to be adjusted when moving from AAA to AXB. OAR point doses may decrease by up to 1 Gy with AXBDm, which can be accounted for in clinical planning. Other OAR metrics do not need to be adjusted.  相似文献   

6.
7.
AimTo investigate the impact of Acuros XB (AXB) algorithm in the deep-inspiration breath-hold (DIBH) technique used for treatment of left sided breast cancer.BackgroundAXB may estimate better lung toxicities and treatment outcome in DIBH.Materials and MethodsTreatment plans were computed using the field-in-field technique for a 6 MV beam in two respiratory phases - free breathing (FB) and DIBH. The AXB-calculations were performed under identical beam setup and the same numbers of monitor units as used for AAA-calculation.ResultsMean Hounsfield units (HU), mass density (g/cc) and relative electron density were -782.1 ± 24.8 and -883.5 ± 24.9; 0.196 ± 0.025 and 0.083 ± 0.032; 0.218 ± 0.025 and 0.117 ± 0.025 for the lung in the FB and DIBH respiratory phase, respectively. For a similar target coverage (p > 0.05) in the DIBH respiratory phase between the AXB and AAA algorithm, there was a slight increase in organ at risk (OAR) dose for AXB in comparison to AAA, except for mean dose to the ipsilateral lung. AAA predicts higher mean dose to the ipsilateral lung and lesser V20Gy for the ipsilateral and common lung in comparison to AXB. The differences in mean dose to the ipsilateral lung were 0.87 ± 2.66 % (p > 0.05) in FB, and 1.01 ± 1.07% (p < 0.05) in DIBH, in V20Gy the differences were 1.76 ± 0.83% and 1.71 ± 0.82% in FB (p < 0.05), 3.34 ± 1.15 % and 3.24 ± 1.17 % in DIBH (p < 0.05), for the ipsilateral and common lung, respectively.ConclusionFor a similar target volume coverage, there were important differences between the AXB and AAA algorithm for low-density inhomogeneity medium present in the DIBH respiratory phase for left sided breast cancer patients. DIBH treatment in conjunction with AXB may result in better estimation of lung toxicities and treatment outcome.  相似文献   

8.
BackgroundThe target volume increases when the prostate and pelvic lymph nodes (PLNs) are combined, and the fiducial markers (FMs) are placed at the edge of the irradiation field. Thus, the position of FMs may be changed by the rotational errors (REs) of “whole pelvis”. The aim of this study was to examine the impact of REs of “whole pelvis” on the dose of FMs-based image-guided radiotherapy to the PLNs and the small bowel in prostate cancer including the PLNs.Materials and methodsWe retrospectively evaluated 10 patients who underwent prostate cancer radiotherapy involving the PLNs. The position of FMs was calculated from the radiographs obtained before and after the 6D correction of pelvic REs. We simulated the delivery dose considering the daily pelvic REs and calculated the difference from the planned dose in the D98% of the PLN clinical target volume and the D2cc, and V45Gy of the small bowel.ResultThe position of FMs strongly correlated with the pelvic REs in the pitch direction (r = 0.7788). However, the mean delivered doses to PLNs for 10 patients were not significantly different from the planned doses (p = 0.625). Although the D2cc and V45Gy of the small bowel strongly correlated with the pitch rotation of the pelvis, there was no significant difference between the delivered and planned doses (p = 0.922 and p = 0.232, respectively).ConclusionThe dosimetric effect of pelvic REs on the dose to PLNs and the small bowel was negligible during the treatment course.  相似文献   

9.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

10.
The goal of this study is to evaluate the effects of intermediate megavoltage (3-MV) photon beams on SBRT lung cancer treatments. To start with, a 3-MV virtual beam was commissioned on a commercial treatment planning system based on Monte Carlo simulations. Three optimized plans (6-MV, 3-MV and dual energy of 3- and 6-MV) were generated for 31 lung cancer patients with identical beam configuration and optimization constraints for each patient. Dosimetric metrics were evaluated and compared among the three plans. Overall, planned dose conformity was comparable among three plans for all 31 patients. For 21 thin patients with average short effective path length (< 10 cm), the 3-MV plans showed better target coverage and homogeneity with dose spillage index R50% = 4.68±0.83 and homogeneity index = 1.26±0.06, as compared to 4.95±1.01 and 1.31±0.08 in the 6-MV plans (p < 0.001). Correspondingly, the average/maximum reductions of lung volumes receiving 20 Gy (V20Gy), 5 Gy (V5Gy), and mean lung dose (MLD) were 7%/20%, 9%/30% and 5%/10%, respectively in the 3-MV plans (p < 0.05). The doses to 5% volumes of the cord, esophagus, trachea and heart were reduced by 9.0%, 10.6%, 11.4% and 7.4%, respectively (p < 0.05). For 10 thick patients, dual energy plans can bring dosimetric benefits with comparable target coverage, integral dose and reduced dose to the critical structures, as compared to the 6-MV plans. In conclusion, our study indicated that 3-MV photon beams have potential dosimetric benefits in treating lung tumors in terms of improved tumor coverage and reduced doses to the adjacent critical structures, in comparison to 6-MV photon beams. Intermediate megavoltage photon beams (< 6-MV) may be considered and added into current treatment approaches to reduce the adjacent normal tissue doses while maintaining sufficient tumor dose coverage in lung cancer radiotherapy.  相似文献   

11.
PurposeThis study retrospectively reviewed locally set pass rates/tolerances for COMPASS® pre-treatment quality assurance results for RapidArc prostate plans to determine if these are appropriate. This was performed via quantifying the agreement between treatment planning system calculations and measurements based on absolute dose comparisons (3% tolerance for all dose points) and global gamma index assessment (3%/3 mm criterion for 97% of points).MethodSeventy-three prostate one-arc RapidArc plans, delivered by four dosimetrically matched linacs, were measured using the MatriXX Evolution two-dimensional array and analysed using COMPASS® (v.3, IBA Dosimetry). For the planning target volumes (PTV) considered, the D99%, D50%, D1% and DMean differences were analysed. The percentage volume with gamma greater than 1, average gamma and DMean difference were investigated for all structures. Nine plans were also assessed across the linac fleet to investigate potential linac dependence of results.Results and ConclusionsRegarding PTV DMean differences, all plans fell within the 3% tolerance and mostly within 2%, although there was a relatively small systematic difference. The absolute percentage differences of average and median doses suggested a weak linac dependence of the results which was found to be clinically insignificant. New stricter tolerances were established both for dose comparisons and gamma evaluation. Correlation between the gamma pass rates and the differences in the D99%, D50% and D1% was found to be moderate suggesting that gamma analysis in isolation has questionable clinical meaning and should only be used to indicate outliers for further analysis.  相似文献   

12.
AimThe primary aim of this study is to provide preliminary indications for safe constraints of rectum and bladder in patients re-irradiated with stereotactic body RT (SBRT).MethodsData from patients treated for prostate cancer (PCa) and intraprostatic relapse, from 1998 to 2016, were retrospectively collected. First RT course was delivered with 3D conformal RT techniques, SBRT or volumetric modulated arc therapy (VMAT). All patients underwent re-irradiation with SBRT with heavy hypofractionated schedules. Cumulative dose-volume values to organs at risk (OARs) were computed and possible correlation with developed toxicities was investigated.ResultsTwenty-six patients were included. Median age at re-irradiation was 75 years, mean interval between the two RT courses was 5.6 years and the median follow-up was 47.7 months (13.4–114.3 months). After re-irradiation, acute and late G ≥ 2 GU toxicity events were reported in 3 (12%) and 10 (38%) patients, respectively, while late G ≥ 2 GI events were reported in 4 (15%) patients. No acute G ≥ 2 GI side effects were registered. Patients receiving an equivalent uniform dose of the two RT treatments < 131 Gy appeared to be at higher risk of progression (4-yr b-PFS: 19% vs 33%, p = 0.145). Cumulative re-irradiation constraints that appear to be safe are D30% < 57.9 Gy for bladder and D30% < 66.0 Gy, D60% < 38.0 Gy and V122.1 Gy < 5% for rectum.ConclusionPreliminary re-irradiation constraints for bladder and rectum have been reported. Our preliminary investigation may serve to clear some grey areas of PCa re-irradiation.  相似文献   

13.
PurposeAdaptive Stereotactic Body Radiotherapy (SBRT) of prostate cancer (PC) by online 1.5 T MRi-guidance prolongs session-time, due to contouring and planning tasks, thus increasing the risk of prostate motion. Hence, the interest to verify the adequacy of the delivered dose.Material and methodsFor twenty PC patients treated by 35 Gy (Dp) in five fractions, daily pre- and post- delivery MRi scans were respectively used for adapt-to-shape (ATS) optimization, and re-computation of the delivered irradiation (Drec). Two expansion recipes, from Clinical (CTV) to Planning target volume (PTV), which slightly differed in the posterior margin were used for groups I and II, of ten patients each. Plans had to assure D95% ≥ 95%Dp to PTV, and D1cc ≤ Dp to rectum, bladder, penile bulb, and urethral planning-risk-volume (urethral-PRV). The adequacy of the delivered dose was estimated by inter-fraction average (ifa) of dose-volume metrics computed from Drec. A cumulative dose (Dsum) was calculated from the five daily Drec deformed onto the simulation MRi.ResultsFor each patient, CTV coverage resulted in D95% > 95%Dp when estimated as ifa by Drec. No significant difference for D95% and D99% metrics to CTV resulted between groups I and II. D1cc was < Dp for rectum, urethral-PRV, and penile bulb, whereas < 103.5%Dp for the bladder.Significant correlations resulted between metrics computed by Dsum and as ifa by Drec, by both linear-correlation analysis, and Receiver-Operating-Characteristic curve analysis.ConclusionsOur results for PC-SBRT confirm the adequacy of the delivered dose by ATS with 1.5 T MR-linac, and the consistency between dose-volume metrics computed by Drec and Dsum.  相似文献   

14.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

15.
PurposeTo assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR).Methods and materialsTen patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan.ResultsThe PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V10Gy, V20Gy and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D35% and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans.ConclusionThe adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs.  相似文献   

16.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

17.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

18.
19.
20.
PurposeTo demonstrate the strength of an innovative knowledge-based model-building method for radiotherapy planning using hypofractionated, multi-target prostate patients.Material and methodsAn initial RapidPlan model was trained using 48 patients who received 60 Gy to prostate (PTV60) and 44 Gy to pelvic nodes (PTV44) in 20 fractions. To improve the model's goodness-of-fit, an intermediate model was generated using the dose-volume histograms of best-spared organs-at-risk (OARs) of the initial model. Using the intermediate model and manual tweaking, all 48 cases were re-planned. The final model, trained using these re-plans, was validated on 50 additional patients. The validated final model was used to determine any planning advantage of using three arcs instead of two on 16 VMAT cases and tested on 25 additional cases to determine efficacy for single-PTV (PTV60-only) treatment planning.ResultsFor model validation, PTV V95% of 99.9% was obtained by both clinical and knowledge-based planning. D1% was lower for model plans: by 1.23 Gy (PTV60, CI = [1.00, 1.45]), and by 2.44 Gy (PTV44, CI = [1.72, 3.16]). OAR sparing was superior for knowledge-based planning: ΔDmean = 3.70 Gy (bladder, CI = [2.83, 4.57]), and 3.22 Gy (rectum, CI = [2.48, 3.95]); ΔD2% = 1.17 Gy (bowel bag, CI = [0.64, 1.69]), and 4.78 Gy (femoral heads, CI = [3.90, 5.66]). Using three arcs instead of two, improvements in OAR sparing and PTV coverage were statistically significant, but of magnitudes < 1 Gy. The model failed at reliable DVH predictions for single PTV plans.ConclusionsOur knowledge-based model delivers efficient, consistent plans with excellent PTV coverage and improved OAR sparing compared to clinical plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号