首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase alpha, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase alpha and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA.  相似文献   

2.
The temperature-sensitive yeast DNA primase mutant pri1-M4 fails to execute an early step of DNA replication and exhibits a dominant, allele-specific sensitivity to DNA-damaging agents. pri1-M4 is defective in slowing down the rate of S phase progression and partially delaying the G1-S transition in response to DNA damage. Conversely, the G2 DNA damage response and the S-M checkpoint coupling completion of DNA replication to mitosis are unaffected. The signal transduction pathway leading to Rad53p phosphorylation induced by DNA damage is proficient in pri1-M4, and cell cycle delay caused by Rad53p overexpression is counteracted by the pri1-M4 mutation. Altogether, our results suggest that DNA primase plays an essential role in a subset of the Rad53p-dependent checkpoint pathways controlling cell cycle progression in response to DNA damage.  相似文献   

3.
In response to genomic insults cells trigger a signal transduction pathway, known as DNA damage checkpoint, whose role is to help the cell to cope with the damage by coordinating cell cycle progression, DNA replication and DNA repair mechanisms. Accumulating evidence suggests that activation of the first checkpoint kinase in the cascade is not due to the lesion itself, but it requires recognition and initial processing of the lesion by a specific repair mechanism. Repair enzymes likely convert a variety of physically and chemically different lesions to a unique common structure, a ssDNA region, which is the checkpoint triggering signal. Checkpoint kinases can modify the activity of repair mechanisms, allowing for efficient repair, on one side, and modulating the generation of the ssDNA signal, on the other. This strategy may be important to allow the most effective repair and a prompt recovery from the damage condition. Interestingly, at least in some cases, if the damage level is low enough the cell can deal with the lesions and it does not need to activate the checkpoint response. On the other hand if damage level is high or if the lesions are not rapidly repairable, checkpoint mechanisms become important for cell survival and preservation of genome integrity.  相似文献   

4.
5.
DNA damage has been shown to regulate DNA replication both by inhibition of origin utilization, and by slowing of replication progression. We have recently reported another mechanism by which DNA damage affects replication, in which the presence of damaged DNA inhibits, in trans, the initiation of chromosomal replication. This inhibition occurs by blocking the association of the processivity clamp PCNA with undamaged chromatin. This inhibitory activity is not due to sequestration of replication factors by the damaged DNA, rather, it acts through generation of a diffusible inhibitor of PCNA loading. The activation of this pathway is independent of canonical checkpoint signaling, and, in fact, results in activation of the checkpoint. This novel pathway may therefore represent an amplification step to stop cell cycle progression in response to lower levels of DNA damage.  相似文献   

6.
DNA damage has been shown to regulate DNA replication both by inhibition of origin utilization, and by slowing of replication progression. We have recently reported another mechanism by which DNA damage affects replication, in which the presence of damaged DNA inhibits, in trans, the initiation of chromosomal replication. This inhibition occurs by blocking the association of the processivity clamp PCNA with undamaged chromatin. This inhibitory activity is not due to sequestration of replication factors by the damaged DNA, rather, it acts through generation of a diffusible inhibitor of PCNA loading. The activation of this pathway is independent of canonical checkpoint signaling, and, in fact, results in activation of the checkpoint. This novel pathway may therefore represent an amplification step to stop cell cycle progression in response to lower levels of DNA damage.  相似文献   

7.
DNA damage checkpoint is one of the surveillance systems to maintain genomic integrity. Checkpoint systems sense the DNA damage and execute cell cycle arrest through inhibiting the activity of cell cycle regulators. This pathway is essential for the maintenance of genome stability and prevention of tumor development. Recent studies have showed that the cellular responses towards DNA damage, such as cell cycle arrest, DNA repair, chromatin remodeling, and apoptosis are well coordinated. Here we describe the molecular mechanisms of checkpoint activation in response to DNA damage and the correlation between checkpoint gene mutation and genomic instability.  相似文献   

8.
Bulky adducts are DNA lesions generated in response to environmental agents including benzo[a]pyrene (a combustion product) and solar ultraviolet radiation. Error-prone replication of adducted DNA can cause mutations, which may result in cancer. To minimize the detrimental effects of bulky adducts and other DNA lesions, S-phase checkpoint mechanisms sense DNA damage and integrate DNA repair with ongoing DNA replication. The essential protein kinase Chk1 mediates the S-phase checkpoint, inhibiting initiation of new DNA synthesis and promoting stabilization and recovery of stalled replication forks. Here we review the mechanisms by which Chk1 is activated in response to bulky adducts and potential mechanisms by which Chk1 signaling inhibits the initiation stage of DNA synthesis. Additionally, we discuss mechanisms by which Chk1 signaling facilitates bypass of bulky lesions by specialized Y-family DNA polymerases, thereby attenuating checkpoint signaling and allowing resumption of normal cell cycle progression.  相似文献   

9.
Genomic DNA is under constant attack from both endogenous and exogenous sources of DNA damaging agents. Without proper care, the ensuing DNA damages would lead to alteration of genomic structure thus affecting the faithful transmission of genetic information. During the process of evolution, organisms have acquired a series of mechanisms responding to and repairing DNA damage, thus assuring the maintenance of genome stability and faithful transmission of genetic information. DNA damage checkpoint is one such important mechanism by which, in the face of DNA damage, a cell can respond to amplified damage signals, either by actively halting the cell cycle until it ensures that critical processes such as DNA replication or mitosis are complete or by initiating apoptosis as a last resort. Over the last decade, complex hierarchical interactions between the key components like ATM/ATR in the checkpoint pathway and various other mediators, effectors including DNA damage repair proteins have begun to emerge. In the meantime, an intimate relationship between mechanisms of damage checkpoint pathway, DNA damage repair, and genome stability was also uncovered. Reviewed hereinare the recent findings on both the mechanisms of activation of checkpoint pathways and their coordination with DNA damage repair machinery as well as their effect on genomic integrity.  相似文献   

10.
DNA replication as a target of the DNA damage checkpoint   总被引:1,自引:0,他引:1  
Faithful inheritance of the genome from mother to daughter cell requires that it is replicated accurately, in its entirety, exactly once. DNA replication not only has to have high fidelity, but also has to cope with exogenous and endogenous agents that damage DNA during the life cycle of a cell. The DNA damage checkpoint, which monitors and responds to defects in the genome, is critical for the completion of replication. The focus of this review is how DNA replication is regulated by the checkpoint response in the presence of DNA damage and fork stalling agents.  相似文献   

11.
生物有机体基因组DNA经常会受到内源或外源因素的影响而导致结构发生变化,产生损伤;在长期进化过程中,有机体也相应形成了一系列应对与修复损伤DNA,并维持染色体基因组正常结构功能的机制。其中DNA损伤检验点(DNA damage checkpoint)就是在感应DNA损伤的基础上,对损伤感应信号进行转导,或引起细胞周期的暂停,从而使细胞有足够的时间对损伤DNA进行修复,或最终导致细胞发生凋亡。DNA损伤检验点信号转导途径是一个高度保守的信号感应过程,整个途径大致可以分为损伤感应、信号传递及信号效应3个组成部分。其中3-磷脂酰肌醇激酶家族类成员ATM(ataxia-telangiectasia mutated)和ATR(ataxia-telangiectasia and Rad3-related)活性的增加构成整个途径活化的第一步。它们通过激活下游的效应激酶,Chk2/Chk1,通过协同作用许多其他调控细胞周期、DNA复制、DNA损伤修复及细胞凋亡等过程的蛋白质因子来实现细胞对DNA损伤的高度协调反应。近十几年,随着此领域研究的不断深入,人们逐步揭示了DNA损伤检验点途径发生过程中,各种核心组分通过与不同调节因子、效应因子及DNA损伤修复蛋白间的复杂相互作用,以实现监测感应异常DNA结构并实施相应反应的机制;其中,检验点衔接因子(mediators)及染色质结构,尤其是核小体组蛋白的共价修饰在调控ATM/ATR活性,促进ATM/ATR与底物间的相互作用以及介导DNA损伤位点周围染色质区域上多蛋白复合物在时间与空间上的动态形成发挥着重要的作用。同时,人们也开始发现DNA损伤检验点途径与DNA损伤修复、基因组稳定性以及肿瘤发生等过程之间某些内在的联系。该反应途径在通过协调细胞针对DNA损伤做出各种反应的基础上,直接或间接地参与或调控DNA损伤修复过程,并与DNA损伤修复途径协同作用最终保证染色体基凶组结构的完整性,而检验点途径的改变,则会引起基因组不稳定的发生,包括从突变频率的提高到大范围的染色体重排,以及染色体数量的畸变。如:突变发生在肿瘤形成早期,会大大增加肿瘤发生的几率。文章将对DNA损伤检验点途径机制及其对DNA损伤修复、基因组稳定性影响的最新进展进行综述。  相似文献   

12.
The genome integrity checkpoint is a conserved signaling pathway that is regulated in yeast by the Mec1 (homologous to human ATR) and Rad53 (homologous to human Chk1) kinases. The pathway coordinates a multifaceted response that allows cells to cope with DNA damage and DNA replication stress. The full activation of the checkpoint blocks origin firing, stabilizes replication forks, activates DNA repair proteins and may lead to senescence or apoptosisin higher eukaryotes. We have recently demonstrated that endogenous replication stress can activate the genome integrity checkpoint in budding yeast at a low level that does not go so far as to interfere with cell cycle progression, but it does activate DNA damage-inducible proteins. Here we demonstrate that the low level pre-activation of the checkpoint, either by endogenous replication stress or by the nucleotide-depleting drug hydroxyurea, can increase damage tolerance to multiple DNA-damaging agents. These results may provide new strategies for using the checkpoint to protect normal cells from genotoxic stress.  相似文献   

13.
In most cells, the DNA damage checkpoint delays cell division when replication is stalled by DNA damage. In early Caenorhabditis elegans embryos, however, the checkpoint responds to developmental signals that control the timing of cell division, and checkpoint activation by nondevelopmental inputs disrupts cell cycle timing and causes embryonic lethality. Given this sensitivity to inappropriate checkpoint activation, we were interested in how embryos respond to DNA damage. We demonstrate that the checkpoint response to DNA damage is actively silenced in embryos but not in the germ line. Silencing requires rad-2, gei-17, and the polh-1 translesion DNA polymerase, which suppress replication fork stalling and thereby eliminate the checkpoint-activating signal. These results explain how checkpoint activation is restricted to developmental signals during embryogenesis and insulated from DNA damage. They also show that checkpoint activation is not an obligatory response to DNA damage and that pathways exist to bypass the checkpoint when survival depends on uninterrupted progression through the cell cycle.  相似文献   

14.
The DNA damage and replication checkpoints are signaling mechanisms that regulate and coordinate cellular responses to genotoxic conditions. Unlike typical signal transduction mechanisms that respond to one or a few stimuli, checkpoints can be activated by a broad spectrum of extrinsically or intrinsically derived DNA damage or replication interference. Recent investigations have shed light on how the damage and replication checkpoints are able to respond to such diverse stimuli. The activation of checkpoints not only attenuates cell cycle progression but also facilitates DNA repair and recovery of faltered replication forks, thereby preventing DNA lesions from being converted to inheritable mutations. Recently, more checkpoint targets from the cell cycle and DNA replication apparatus have been identified, revealing the increasing complexity of the checkpoint control of the cell cycle. In this article, we discuss current models of the DNA damage and replication checkpoints and highlight recent advances in the field.  相似文献   

15.
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.  相似文献   

16.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   

17.
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.  相似文献   

18.
细胞DNA损伤检控点   总被引:1,自引:0,他引:1  
细胞周期检控点是维持细胞基因组稳定性的一个重要机制,主要包括。DNA损伤检控点、DNA复制检控点和纺锤体组装检控点。其中DNA损伤检控点能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,为修复损伤提供足够的时间,以保证细胞遗传的稳定性。有关DNA损伤检控点的研究近年来已经取得了突破性进展,现简要介绍近年来在DNA损伤检控点研究中的一些新进展。  相似文献   

19.
Checkpoints were originally identified as signalling pathways that delay mitosis in response to DNA damage or defects in chromosome replication, allowing time for DNA repair to occur. The ATR (ataxia- and rad-related) and ATM (ataxia-mutated) protein kinases are recruited to defective replication forks or to sites of DNA damage, and are thought to initiate the DNA damage response in all eukaryotes. In addition to delaying cell cycle progression, however, the S-phase checkpoint pathway also controls chromosome replication and DNA repair pathways in a highly complex fashion, in order to preserve genome integrity. Much of our understanding of this regulation has come from studies of yeasts, in which the best-characterized targets are the stimulation of ribonucleotide reductase activity by multiple mechanisms, and the inhibition of new initiation events at later origins of DNA replication. In addition, however, the S-phase checkpoint also plays a more enigmatic and apparently critical role in preserving the functional integrity of defective replication forks, by mechanisms that are still understood poorly. This review considers some of the key experiments that have led to our current understanding of this highly complex pathway.  相似文献   

20.
DNA structure checkpoint pathways in Schizosaccharomyces pombe   总被引:4,自引:0,他引:4  
Caspari T  Carr AM 《Biochimie》1999,81(1-2):173-181
The response to DNA damage includes a delay to progression through the cell cycle to aid DNA repair. Incorrectly replicated chromosomes (replication checkpoint) or DNA damage (DNA damage checkpoint) delay the onset of mitosis. These checkpoint pathways detect DNA perturbations and generate a signal. The signal is amplified and transmitted to the cell cycle machinery. Since the checkpoint pathways are essential for genome stability, the related proteins which are found in all eukaryotes (from yeast to mammals) are expected to have similar functions to the yeast progenitors. This review article focuses on the function of checkpoint proteins in the model system Schizosaccharomyces pombe. Checkpoint controls in Saccharomyces cerevisiae and mammalian cells are mentioned briefly to underscore common or diverse features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号