首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Backgrounds and Aims

Shoot demography affects the growth of the tree crown and the number of leaves on a tree. Masting may cause inter-annual and spatial variation in shoot demography of mature trees, which may in turn affect the resource budget of the tree. The aim of this study was to evaluate the effect of masting on the temporal and spatial variations in shoot demography of mature Betula grossa.

Methods

The shoot demography was analysed in the upper and lower parts of the tree crown in mature trees and saplings over 7 years. Mature trees and saplings were compared to differentiate the effect of masting from the effect of exogenous environment on shoot demography. The fate of different shoot types (reproductive, vegetative, short, long), shoot length and leaf area were investigated by monitoring and by retrospective survey using morphological markers on branches. The effects of year and branch position on demographic parameters were evaluated.

Key Results

Shoot increase rate, production of long shoots, bud mortality, length of long shoots and leaf area of a branch fluctuated periodically from year to year in mature trees over 7 years, in which two masting events occurred. Branches within a crown showed synchronized annual variation, and the extent of fluctuation was larger in the upper branches than the lower branches. Vegetative shoots varied in their bud differentiation each year and contributed to the dynamic shoot demography as much as did reproductive shoots, suggesting physiological integration in shoot demography through hormonal regulation and resource allocation.

Conclusions

Masting caused periodic annual variation in shoot demography of the mature trees and the effect was spatially variable within a tree crown. Since masting is a common phenomenon among tree species, annual variation in shoot demography and leaf area should be incorporated into resource allocation models of mature masting trees.  相似文献   

2.
To clarify mortality patterns of current-year shoots within the crown of Betula maximowicziana Regel after severe insect herbivory in central Hokkaido, northern Japan, we investigated the degree of defoliation, pattern of shoot development, shoot mortality, and leaf tissue-water relations. One hundred current-year long shoots growing in a B. maximowicziana plantation were observed for defoliation and mortality in June 2002. An outbreak of herbivorous insects (Caligula japonica and Lymantria dispar praeterea) occurred in the stand in mid-to-late June, and the monitored shoots were defoliated to various degrees. Within 1 month of defoliation, some of the severely defoliated shoots had produced new leaves on short shoots that had emerged from axillary buds. Stepwise logistic regression revealed that the probability that current-year long shoots would put out axillary short shoots with leaves is closely related to the degree of defoliation. To evaluate the water relations of the leaves, we determined pressure–volume curves for the leaves that survived the herbivorous insect outbreak and the new leaves that emerged after defoliation. The water potential at turgor loss (Ψl,tlp) and the osmotic potential at full turgidity (Ψπ,sat) were higher for the new leaves than for the surviving leaves, indicating a lower ability to maintain leaf cell turgor against leaf dehydration in the new leaves. Of the 100 shoots, 13 died after the emergence of new leaves. Stepwise logistic regression revealed that the probability that the long shoots would die generally increased with the emergence of new leaves, with increasing shoot height. This result suggests that the combined effect of the vulnerability of newly emerged leaves and low water availability, associated with higher shoot positions within the crown, caused shoot mortality. Based on our results, some possible mechanisms for mortality in severely defoliated B. maximowicziana are discussed.  相似文献   

3.
本文在蒿柳(SalixviminalisL.)单叶叶面积(AL)估测的基础上预测枝条水平上的叶面积.AL与叶特征度量叶长(L)、宽(W)、L2、W2、乘积(LW),叶干重(WL)之间相关性分析表明,尽管大多数相关关系本质上为非线性,但线性(Y=b×X)和非线性指数方程(Y=b×Xc)均有较高的复相关系数r2和较好的预测能力,且以LW最好。AL估测方程的建立必须考虑植物生长阶段、枝类型及叶片着生的相对高度的影响.椭圆和抛物面的组合能成功地拟合叶片形状,反映叶形变化和较准确的计算单叶面积.以主技基径D,枝长H,D2H以及主枝上的叶片数与基径的乘积(NL·D)为独立交量来估测主枝叶面积(Ap)的非线性方程好于线性方程,但方程的估计精度因腋生枝的萌生而受影响.腋生枝数与主枝基径的乘积组合(NSS·D)、腋生枝干重(WS)的非线性方程可用于估测胶生枝叶面积(As),枝水平上叶面积的估测方程都因植物生长阶段的不同而有差异.  相似文献   

4.
The singular umbrella-like crown shape of Stone pine can be interpreted as a consequence of primary shoot-growth patterns and posterior axis differentiation due to differential secondary growth and down-bending of branches. This paper centres on the first aspect, analysing the growth, branching and flowering behaviour of about 5,000 individual shoots on 27 grafted Stone pines. The data measurement on standing trees allowed to study correlations of topologic and geometric variables in the shoot and their ancestors. The only significant correlations were found with parameters of the mother shoot formed the previous year and with the number of cones born 3 years before by the respective ancestor. The fitted relationships between geometric and topologic shoot and branch variables are the first step of a structural model construction that can be completed with functional components like a radiation and a carbon allocation submodel, stressing the importance of the heavy Stone pine cones as carbon sinks, with a total annual allocation similar to stem wood. In conclusion, the Stone pine crown shape emerges as consequence of the lack of initial vigour differentiation between stem and main-branch apical meristems that favour the generalized sylleptic reiteration in the open-grown trees.  相似文献   

5.
Leafing pattern has long been considered as an important element characterizing the growth strategy of tree species; however, the consequences of leafing pattern for tree-crown formation have not been fully understood. To address this issue, the dynamic events (growth, birth, and death) of current-year shoots and leaves were investigated together with their location in saplings of a pioneer tree, Alnus sieboldiana. The leafing pattern was characterized by successive emergence and shedding of short-lived leaves. The combination of successive leafing and within-crown variation in leaf production brought about characteristic outcomes in crown morphology. In the outer crown, because of continuous leaf production, the shoots achieved great extension and enormous daughter shoot production, resulting in rapid expansion of the crown. In contrast, in the inner crown, due to early termination of leaf production, the shoots completely lost their leaves early in the growing season and consequently themselves died and were shed within the season. Such quick shedding of shoots caused “crown hollowing”, i.e., the interior crown consisted of primary branches with little secondary development or foliage. These dynamic features are an effective adaptive strategy in early succession but also may be a disadvantage to maintaining foliage for longer period. Crown maintenance associated with the longevity of structural components is thought to play an important role in survival strategy of tree species.  相似文献   

6.
Summary We measured the effects ofEriophyes laevis mite galls on the relative growth of short shoot leaf area ofAlnus glutinosa. A portion of leaves was artificially removed from a set of short shoots with both high and low gall density to cause local stress conditions. Nontreated high and low gall density short shoots were used as controls. The results show that the relative growth of leaf area measured for short shoots is negatively affected by high gall density. Artificial leaf removal, on the other hand, had positive effects on leaf area growth. Interestingly, the growth of leaf area did not differ for high gall density short shoots with leaf removal and noninfested short shoots with no leaf removal. This result may be caused by the combined, opposite effects of leaf removal and gall infestation.  相似文献   

7.
The seasonal changes in leaf emergence and leaf-fall in a Japanese alder stand of the fen in Kushiro Marsh were studied, and survival curves for the leaves were drawn. Leaves collected in litter traps were dried and weighed to study the seasonal changes, peaks in mid-August and late September to October suggested a bimodal annual curve. Study of the seasonal changes in the number of emerged and fallen leaves per shoot revealed a third peak about one month before the August peak, showing a trimodal annual curve. First and second leaves had a longevity of about 40 and 50–60 days, respectively. The longevity increased until the fifth leaf. With the sixth and following leaves, longevity decreased. Leaf size increased with leaf rank, with the first leaf being the smallest. The first leaf had only about 10% and the second leaf only 20% of the area of the fifth leaf. On this basis, the early to mid-July peak in number of fallen leaves was composed of first and second leaves which were smaller and short-lived. The early August and September/October peaks were high in both number and mass of fallen leaves. Compared to reports on Japanese alder of other mountainous districts in Hokkaido, the alder trees of Kushiro Marsh had about the same number of leaves per shoot, but had a season of leaf emergence which was about 6 weeks shorter. In addition, the longevity of the longest-lived fifth leaf was about 30–40 days shorter. The short life span of the leaves could be considered as an adaptive strategy of this species to environmental constraints of its habitat.  相似文献   

8.
Influence of elevated CO2 and O3 on Betula pendula Roth crown structure   总被引:4,自引:0,他引:4  
Elevated CO(2) and ozone effects were studied singly and in combination on the crown structure of two Betula pendula clones. Measurements were made at the end of the second fumigation period in an open-top-chamber experiment with 9-year-old trees. Shoot ramification (number of long and short daughter shoots), shoot length, and number of metamers, leaves and buds were measured at four positions in every tree. As a result of increased temperature, trees in chambers had longer shoots and more frequent shoot ramification than control trees not enclosed in chambers. Ozone treatment decreased shoot ramification significantly. Additionally, ozone treatment resulted in an increased number of metamers in one clone. There was no statistically significant interaction between ozone effect and crown position; however, there was a slight tendency for the lower crown to be more affected by ozone. Elevated CO(2) caused a significant increase in the number of long-shoot metamers. Therefore, 2x ambient CO(2) concentration partly ameliorated the negative effect of ozone because the increased number of leaves per shoot counteracted the decreased branching. Although the main effects of elevated ozone and CO(2) were similar in the two clones, slight, statistically insignificant, differences appeared in their responses when interactions with crown position were considered.  相似文献   

9.
Leaf anatomy was studied in the mosaic Ficus benjamina cv. Starlight and non-chimeric Ficus benjamina cv. Daniel. The number of chloroplasts in a white, chlorophyll-deficient tissue declines as compared to the green tissue. However, their functional activity is retained. The leaf of the mosaic F. benjamina contains two or, sometimes, three subepidermal layers. Mesophyll forms one layer in the green and white parts of leaf palisade and one white and one green layer in the transitional zone (edge). In the transitional zone, green spongy mesophyll is located between two white spongy layers and the proportion of photosynthesizing cells varies. In cv. Daniel, there are two subepidermal layers and one layer of columnar mesophyll cells. According to the morphometry data, the proportion of white zone in the leaf correlates with the leaf position in the whole shoot: the higher the branch order, the larger the proportion of white zone. The total leaf area depends also on its position in the shoot. No such correlation was found in non-chimeric F. benjamina cv. Daniel. In the mosaic chimera, the source-sink status appears to depend on the leaf position in the shoot. Experiments with individual shoots of the same order and elimination of all lateral shoots have shown that the proportion of white zone in new leaves on the shoot increases with the total area of green zone. Thus, the area of assimilating shoot surface affects the formation of leaves in the meristem. A hypothesis was put forward that the source-sink state affects the ratio of green and white parts in the leaf primordium. Products of photosynthesis (carbohydrates) are a possible metabolic signal affecting the meristem. It cannot be excluded as well that the hormonal state undergoes changes in the chimeric plant.  相似文献   

10.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

11.
J. Kummerow 《Plant and Soil》1983,71(1-3):395-399
Summary Individual shoots of the shrubsLedum palustre L.,Vaccinium uliginosum L., andBetula nana L. were severed from their parent plants beneath the moss surface in an Alaskan tussock tundra. These shoots remained one year in their original position in peat moss cushions without further disturbance. After this period fine root dry weight, fine root surface area, leaf dry weight, and leaf area of these shoots were measured and compared with equivalent values from unsevered control shoots. Dry weight ratios of fine roots/leaves were similar in cut and control shoots, with the exception ofB. nana. The fine root surface/leaf area ratios showed significant differences between control and cut shoots except inL. palustre. Without tedious rootlet extractions it should be possible to estimate fine root surface area from leaf area ofL. palustre.  相似文献   

12.
D. D. Ackerly 《Oecologia》1992,89(4):596-600
Summary Tropical vines in the Araceae family commonly exhibit alternating periods of upward and downward growth, decoupling the usual relationship between decreasing light environment with increasing age among the leaves on a shoot. In this study I examined patterns of light, leaf specific mass, and leaf nitrogen concentration in relation to leaf position, a measure of developmental age, in field collected shoots of Syngonium podophyllum. These data were analyzed to test the hypothesis that nitrogen allocation parallels within-shoot gradients of light availability, regardless of the relationship between light and leaf age. I found that leaf nitrogen concentration, on a mass basis, was weakly correlated with leaf level light environment. However, leaf specific mass, and consequently nitrogen per unit leaf area, were positively correlated with gradients of light within the shoot, and either increased or decreased with leaf age, providing support for the hypothesis that nitrogen allocation parallels gradients of light availability.  相似文献   

13.
We studied the relationship between variation in age and shoot characteristics of the host plant Salix exigua Nuttall (coyote or sandbar willow) and the attack and survival of Euura sp. (an unnamed leaf-midrib galling sawfly). Variation in shoot characteristics resulted from reduced growth as willow ramets aged. Mean shoot length per ramet and mean longest leaf length per shoot decreased by 95% and 50% respectively between 1- and 9-year-old willow ramets. All measured shoot characteristics-shoot length, longest leaf length, number of leaves per shoot, and mean internode length-were significantly negatively correlated with ramet age (r 2 ranged from –0.23 to –0.41). Correlations between shoot characteristics were highly positive, indicating that plants also grew in a strongly integrated fashion (r 2 ranged from 0.54 to 0.85). Four hypotheses were examined to explain sawfly attack patterns. The host-plant hypothesis was supported in explaining enhanced larval sawfly survival through reduced plant resistance. As willow ramets aged, the probability of Euura sp. attack decreased over 10-fold, from 0.315 on 1-year-old ramets to 0.024 on 2- to 9-year-old ramets. As shoot length increased, the probability of sawfly attack increased over 100-fold, from 0.007 on shoots <100 mm, to 0.800 on shoots in the 1001–1100 mm shoot length class. These attack patterns occurred even though 1-year-old ramets and shoots >500 mm each represented less than 2% of the total shoots available for oviposition. Host plant induced mortality of the egg/early instar stage decreased by 50% on longer leaves and was the most important factor determining survival differences between vigorous and non-vigorous hosts. Sawfly attack was not determined by the resource distribution hypothesis. Although shoots <200 mm contained 82% of the total leaves available, they contained only 43% of the galls initiated. The attack pattern also was not explained by the gall volume hypothesis. Although gall volume increased on longer shoots, there was no significant variation in mid or late instar mortality over shoot length, as would be expected if food resources within smaller galls were limited. The natural enemy attack hypothesis could not explain the pattern of oviposition since predation was greater on longer shoots and leaves. In addition, larval survival was related to oviposition behavior. Due to a 69% reduction in late instar death and an 83% reduction in parasitism, survival of progeny in galls initiated close to the petiole base was 2.8 times greater than in galls initiated near the leaf tip. A 75% reduction in gall volume over this range of gall positions may account for the observed increases in late instar mortality and parasitism.  相似文献   

14.
BACKGROUND AND AIMS: Light extinction through crowns of canopy trees determines light availability at lower levels within forests. The goal of this paper is the exploration of foliage distribution and light extinction in crowns of five canopy tree species in relation to their shoot architecture, leaf traits (mean leaf angle, life span, photosynthetic characteristics) and successional status (from pioneers to persistent). METHODS: Light extinction was examined at three hierarchical levels of foliage organization, the whole crown, the outermost canopy and the individual shoots, in a tropical moist forest with direct canopy access with a tower crane. Photon flux density and cumulative leaf area index (LAI) were measured at intervals of 0.25-1 m along multiple vertical transects through three to five mature tree crowns of each species to estimate light extinction coefficients (K). RESULTS: Cecropia longipes, a pioneer species with the shortest leaf life span, had crown LAI <0.5. Among the remaining four species, crown LAI ranged from 2 to 8, and species with orthotropic terminal shoots exhibited lower light extinction coefficients (0.35) than those with plagiotropic shoots (0.53-0.80). Within each type, later successional species exhibited greater maximum LAI and total light extinction. A dense layer of leaves at the outermost crown of a late successional species resulted in an average light extinction of 61% within 0.5 m from the surface. In late successional species, leaf position within individual shoots does not predict the light availability at the individual leaf surface, which may explain their slow decline of photosynthetic capacity with leaf age and weak differentiation of sun and shade leaves. CONCLUSION: Later-successional tree crowns, especially those with orthotropic branches, exhibit lower light extinction coefficients, but greater total LAI and total light extinction, which contribute to their efficient use of light and competitive dominance.  相似文献   

15.
银杏叶片形态研究   总被引:5,自引:0,他引:5  
通过对银杏不同枝类、不同叶序的叶片形态进行调查,结果表明:银杏不同枝类的叶片形态差异较大,叶宽、叶柄长、叶基角:多年生鳞枝>一年生鳞枝>一年生长枝;叶长、叶形指数:一年生长枝>一年生鳞枝>多年生鳞枝;叶面积:一年生和多年生鳞枝>一年生长枝;有缺刻叶比例:一年生长枝>多年生鳞枝>一年生鳞枝.一年生长枝叶片的叶宽、叶长、叶面积、叶柄长、叶基角均随叶序的增加逐渐减小,叶形指数和有缺刻叶的比例则增加.一年生和多年生鳞枝1~5叶的叶长、叶宽和叶面积随叶序增加而逐渐增加,第5~6叶达最大,以后随叶序增加而逐渐减小,叶形指数和叶柄长度随叶序增加而增加,叶基角随叶序增加而减小.一年生长枝的第2叶、一年和多年生鳞枝的第4叶可作为品种描述的标准叶.  相似文献   

16.
Branch architecture, leaf photosynthetic traits, and leaf demography were investigated in saplings of two woody species, Homolanthus caloneurus and Macaranga rostulata, co-occurring in the understory of a tropical mountain forest. M. rostulata saplings have cylindrical crowns, whereas H. caloneurus saplings have flat crowns. Saplings of the two species were found not to differ in area-based photosynthetic traits and in average light conditions in the understory of the studied site, but they do differ in internode length, leaf emergence rate, leaf lifespan, and total leaf area. Displayed leaf area of H. caloneurus saplings, which have the more rapid leaf emergence, was smaller than that of M. rostulata saplings, which have a longer leaf lifespan and larger total leaf area, although M. rostulata saplings showed a higher degree of leaf overlap. Short leaf lifespan and consequent small total leaf area would be linked to leaf overlap avoidance in the densely packed flat H. caloneurus crown. In contrast, M. rostulata saplings maintained a large total leaf area by producing leaves with a long leaf lifespan. In these understory saplings with a different crown architecture, we observed two contrasting adaptation strategies to shade which are achieved by adjusting a suite of morphological and leaf demographic characters. Each understory species has a suite of morphological traits and leaf demography specific to its architecture, thus attaining leaf overlap avoidance or large total leaf area.  相似文献   

17.
In the flora of French Guiana we find considerable within-plant variation in leaf form. We observed entire, two-lobed, and three-lobed leaves within five separate levels (tiers) of the canopy of a single individual ofPourouma tomentosa subsp.maroniensis. Five branches from each of the five tiers of the tree were collected around the axis of the trunk. From these branches five secondary branchlets were selected and all leaves excised with information recorded as to nodal position, number of leaf nodes, and fertility status of the main branch. This design produced 1015 leaves representing about 20 m2 of foliar area and about 2.4 kg of blade dry weight. Our objectives were to determine if statistically significant patterns exist for leaf variation and to suggest improvements for future, general collections. The four lower tiers had 62% entire, 10% 2-lobed, and 28% 3-lobed leaves, in contrast to the top tier with 38% entire, 11% 2-lobed, and 51% 3-lobed leaves. The top tier had no fertile branches. in the lower tiers, fertile branches produced 68% entire leaves whereas nonfertile branches produced only 46% entire leaves. In the top tier, lobed leaves made up 73% of surface area, while in the lower tiers, lobed leaves made up only 48% of total surface area. We selected a random subset of 75 leaves from the 1015, for morphometric analysis using two-way ANOVA (tier×leaf type). The boundaries of leaf images were digitized and rendered into Fourier coefficients, yielding leaf surface area and two variables that quantify aspects of shape: dissection index and leaf complexity. The Fourier coefficients were averaged by tier and by leaf type to reconstruct synthetic, average leaf images. Logistic regression was used to predict the position of leaves on the tree and to provide visualization of the relationships between leaf position on the tree and leaf morphological variables. Within the tree crown, leaf surface area and leaf specific mass (LSM) increases with height, although leaf shape does not change with height. LSM does not vary with leaf form; and sun leaves are larger than shade leaves on this tree. We conducted computer sampling experiments based on exact randomization to simulate the process of obtaining all leaf shapes present in an individual tree when making field collections of varying numbers of duplicates. This also points out the importance of noting the presence of within-tree variation in leaf form on herbarium labeds. Failure to recognize leaf variation can lead to incorrect delimitation of species as well as cause overestimates of the number of species in diversity studies.  相似文献   

18.
The size (length and diameter) and number of leaf primordia of winter buds of Nothofagus antarctica (G. Forster) Oerst. shrubs were compared with the size and number of leaves of shoots derived from buds in equivalent positions. Buds developed in two successive years were compared in terms of size and number of leaf primordia. Bud size and the number of leaf primordia per bud were greater for distal than for proximally positioned buds. Shoots that developed in the five positions closest to the distal end of their parent shoots had significantly more leaves than more proximally positioned shoots of the same parent shoots. The positive relationship between the size of a shoot and that of its parent shoot was stronger for proximal than for distal positions on the parent shoots. For each bud position on the parent shoots there were differences in the number of leaf primordia per bud between consecutive years. The correlations between the number of leaf primordia per bud and bud size, bud position and parent shoot size varied between years. Only shoots produced close to the distal end of a parent shoot developed neoformed leaves; more proximal sibling shoots consisted entirely of preformed leaves. Leaf neoformation, a process usually linked with high shoot vigour in woody plants, seems to be widespread among the relatively small shoots developed in N. antarctica shrubs, which may relate to the species' opportunistic response to disturbance.  相似文献   

19.
Li B  Huang W  Bass T 《Plant cell reports》2003,22(4):231-238
As part of the effort to develop optimal plant varieties for the production and molecular farming of plant-made pharmaceuticals, this study evaluated shoot organogenic potential of a total of 115 Nicotiana accessions, representing 53 species. To induce shoots, leaves from seedling grown in vitro were cut into pieces, cultured on shoot-induction medium under low light for 3 weeks, and then subcultured onto the same medium for another 4 weeks under normal light. Statistical analysis detected significant differences among the 115 accessions for the percentage of leaf explants producing shoots and the number of shoots produced per responsive leaf explant. Importantly, regression analysis also found an exponential relationship between the number of shoots produced per responsive leaf explant and the percentage of leaf explants producing shoots. The number of shoots produced per responsive leaf explant increased rather slowly, ranging from zero to around five, as the percentage of leaf explants producing shoots increased from 0 to 80%, but the increase became dramatic as the percentage increased from 80% to 100%, reaching as high as 35 shoots per responsive leaf explant. This exponential relationship is the first of its kind to be established in plant regeneration studies using either organogenesis or somatic embryogenesis systems. A possible mechanism that governs the establishment of the exponential relationship is discussed.Abbreviations 2ip 6-(,-Dimethylallylamino)-purine - BA Benzylaminopurine - IAA Indole-3-acetic acid - LS Linsmaier and Skoog - MS Murashige and Skoog - PI Plant introduction number - PMP Plant-made pharmaceuticals - SIM Shoot induction medium - USDA US Department of Agriculture  相似文献   

20.
Summary A simulation model for radiation absorption and photosynthesis was used to test the hypothesis that observed nonuniform distributions of nitrogen concentrations in young Eucalyptus grandis trees result in greater amounts of daily assimilation than in hypothetical trees with uniform N distributions. Simulations were performed for trees aged 6, 9, 12 and 16 months which had been grown in plantations under a factorial combination of two levels of fertilization and irrigation. Observed leaf N distribution patterns yielded daily assimilation rates which were only marginally greater (<5%) than for hypothetical trees with uniform distributions. Patterns of assimilation distribution in individual tree crowns closely resembled those for absorbed radiation, rather than for N. These conclusions were unaffected by three choices of alternative leaf area density distributions. The simulation model was also used to calculate hourly and daily rates of canopy assimilation to investigate the relative importance of radiation absorption and total canopy nitrogen on assimilation. Simulated hourly rates of carbon assimilation were often lightsaturated, whereas daily carbon gain was directly proportional to radiation absorbed by the tree crown and to total mass of N in the leaves. Leaf nitrogen concentrations determined photosynthetic capacity, whereas total leaf area determined the amount of radiation absorbed and thus the degree to which capacity was realized. Observed total leaf area and total crown N were closely correlated. The model predicted that nitrogen use efficiences (NUE, mol CO2 mol–1 N) were 60% higher for unfertilized than for fertilized trees at low levels of absorbed photosynthetically active radiation (PAR). Nitrogen use efficiency was dependent on fertilizer treatment and on the amount of absorbed PAR; NUE declined with increasing absorbed PAR, but decreased more rapidly for unfertilized than for fertilized trees. Annual primary productivity was linearly related to both radiation absorbed and to mass of N in the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号