首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. The presence of inverted repeated sequences was clearly demonstrated in one of them by electron microscopy. DNA sequence analysis showed that the left portion of this clone contains three tandem, directly repeated copies of a 340-bp sequence, a 120-bp portion of which appears in inverted orientation at a 1.6-kb distance. This clone, pTtFB1, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. We found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat, one in the "loop" and one in the "right flanking region," are totally eliminated during macronuclear development--and contain open reading frames. A fourth family occurs in the "loop" region and is rearranged extensively during development. The two gene families that are eliminated are stable in the micronuclear genome but are not clustered together as evidenced by experiments in which DNAs from nullisomic strains are used to map family members to specific micronuclear chromosomes. The inverted repeat family is also stable in the micronuclear genome and is dispersed among several chromosomes. The significance of retained inverted repeats to the process of elimination is discussed.  相似文献   

2.
3.
4.
The DNA of ciliated protozoa.   总被引:35,自引:0,他引:35       下载免费PDF全文
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

5.
Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons.  相似文献   

6.
Tetrahymena micronuclear DNA fragments have been cloned in the plasmid pBR322. One clone, pTt 2512, has been found to contain the C-C-C-C-A-A hexanucleotide repeat which is also present in the macronuclear rDNA. Further restriction enzyme digestion and hybridization studies suggest that the clone also contains sequences that are not present in the somatic macronucleus. The flanking sequences of the C4A2 repeats in this clone were separated into four restriction fragments, one from one side and three from the other. These fragments were used as probes for Southern hybridization to study the organizations of similar sequences in the macronucleus and micronucleus. All four fragments hybridized to many fragments of restriction enzyme digested micronuclear DNA. However, none of these hybridizations were detected in the macronucleus. Thus, these families of repetitive DNA are completely eliminated from the macronucleus. Further analysis suggested that the four different sequences may be linked at other locations of the genome. Using nullisomic strains of Tetrahymena, it is found that at least one of these sequences is present in more than one chromosome. Studies of various normal and star strains of Tetrahymena suggest that these sequences are stable in the normal micronucleus but are altered drastically in the defective micronuclei of the star strains. Eliminated DNA of similar nature has also been found in at least five other randomly selected clones of micronuclear DNA and may be present widely in the genome.  相似文献   

7.
The macronucleus of the protozoan Oxytricha fallax is generated from a micronucleus following conjugation. While the micronucleus contains high molecular weight DNA, the macronucleus contains only short linear DNA molecules which all end in the same 20 bp inverted terminal repeat (Ma-ITR). The Ma-ITR was radioactively labeled and purified for use as a probe in hybridizations to micronuclear and macronuclear DNA. Sequences homologous to the Ma-ITR were detected in micronuclear DNA. The copy number of the repeat in the micronuclear genome is approximately that required to encode the macronuclear DNA termini. The micronuclear copies are found embedded in repeated long sequence blocks.  相似文献   

8.
The ciliated protozoa exhibit nuclear dimorphism. The genome of the somatic macronucleus arises from the germ-line genome of the micronucleus following conjugation. We have studied the fates of highly repetitious sequences in this process. Two cloned, tandemly repeated sequences from the micronucleus of Oxytricha fallax were used as probes in hybridizations to micronuclear and macronuclear DNA. The results of these experiments show: (1) the cloned repeats are members of two apparently unrelated repetitious sequence families, which each appear to comprise a few percent of the micronuclear genome, and (2) the amount of either family in the macronuclei from which our DNA was prepared is about 1/15 that found in an equal number of diploid micronuclei. Most, if not all, of the apparent macronuclear copies of these repeats can be accounted for by micronuclear contamination, which strongly suggests that these sequences are eliminated from the macronuclei and have no vegetiative function.  相似文献   

9.
During its life cycle, the hypotrichous ciliated protozoan Oxytricha nova transforms a copy of its micronucleus, which contains chromosome-sized DNA, into a macronucleus containing linear, gene-sized DNA molecules. A region of the micronuclear genome has been defined that gives rise to two distinct macronuclear DNA molecules during development. Through analysis of recombinant macronuclear and micronuclear clones, the generation of the two macronuclear DNA molecules was shown to be the result of alternative use of chromosome fragmentation sites. In addition, evidence was obtained that adjacent micronuclear precursors of macronuclear DNA molecules can overlap by a few base pairs. The significance of these findings in relation to developmental chromosome fragmentation is discussed.  相似文献   

10.
Oxytricha nova is a hypotrichous ciliate with micronuclei and macronuclei. Micronuclei, which contain large, chromosomal-sized DNA, are genetically inert but undergo meiosis and exchange during cell mating. Macronuclei, which contain only small, gene-sized DNA molecules, provide all of the nuclear RNA needed to run the cell. After cell mating the macronucleus is derived from a micronucleus, a derivation that includes excision of the genes from chromosomes and elimination of the remaining DNA. The eliminated DNA includes all of the repetitious sequences and approximately 95% of the unique sequences. We cloned large restriction fragments from the micronucleus that confer replication ability on a replication-deficient plasmid in Saccharomyces cerevisiae. Sequences that confer replication ability are called autonomously replicating sequences. The frequency and effectiveness of autonomously replicating sequences in micronuclear DNA are similar to those reported for DNAs of other organisms introduced into yeast cells. Of the 12 micronuclear fragments with autonomously replicating sequence activity, 9 also showed homology to macronuclear DNA, indicating that they contain a macronuclear gene sequence. We conclude from this that autonomously replicating sequence activity is nonrandomly distributed throughout micronuclear DNA and is preferentially associated with those regions of micronuclear DNA that contain genes.  相似文献   

11.
C4A2 repeats are present in multiple clusters in both the macronucleus and micronucleus of Tetrahymena. Although the macronucleus is generated from the micronucleus after sexual conjugation, the repeats are telomeric sequences in the macronucleus but are internally located in the micronucleus (1). This study investigates the fate of the sequences adjacent to the micronuclear C4A2 repeats. Southern blot analyses of 21 C4A2-containing micronuclear clones show that extensive elimination of the adjacent sequences occurs during the formation of the macronucleus. Comparison of one C4A2-containing micronuclear clone with its derived macronuclear segment indicates that approximately 4.5 kb of DNA, which includes the C4A2 repeats and adjacent sequences on both sides is deleted from the macronucleus. The two regions adjoining the deletion are joined together to form a contiguous segment in the macronucleus. This excision of C4A2 repeats and surrounding sequences and the rejoining of the retained segments is probably the mechanism by which all or most of the other C4A2 adjacent sequences are eliminated.  相似文献   

12.
13.
SYNOPSIS.
Under the growth conditions employed, the G1 macronucleus of Tetrahymena pyriformis HSM contains 7.4 × 10-12 g DNA, the G2 micronucleus 0.42 × 10-12 g. DNA content from the Tetrahymena thermophila macronucleus did not significantly differ from that of HSM, but the micronucleus contained about twice as much DNA as the micronucleus of the HSM cells. The T. thermophila macronucleus contained on average enough DNA for ˜ 35 haploid micronuclear copies. A new spreading technic allowed separation of macronuclear substructures from cells of late G2 to early G1. Photometric determination of DNA content of 345 individual structures suggested the existence of 5 different-sized macronuclear structures with a DNA content corresponding to 2, 4, 8, and 16 × the basic values. Comparison of the DNA content of these structures with (a) mitotic micronuclear chromosomes and (b) meiotic micronuclear chromosomes of T. thermophila cells suggests that the 5 basic values of macronuclear structures derive from structures of micronuclear chromosomes. The micronuclear chromosomes of T. pyriformis may be oligotenic. It is suggested that these results further our understanding of macronuclear organization.  相似文献   

14.
L A Klobutcher  C L Jahn  D M Prescott 《Cell》1984,36(4):1045-1055
During the life cycle of the hypotrichous ciliate Oxytricha nova, a macronucleus containing short, gene-sized DNA molecules is produced from a copy of the chromosomal micronuclear genome. In order to characterize the process of macronuclear development, we have isolated and determined the DNA sequence of a particular macronuclear gene and its micronuclear precursor. The results of this analysis indicate that macronuclear telomeric sequences (5'C4A4(3') repeats) are not present at the ends of the gene in its micronuclear chromosomal location and must be added during development. In addition, the micronuclear copy of the gene contains three short blocks of sequence that must be removed during development, implying the involvement of a nucleic acid-splicing process in generating mature macronuclear genes.  相似文献   

15.
Extensive DNA rearrangement occurs during the development of the somatic macronucleus from the germ line micronucleus in ciliated protozoans. The micronuclear junctions and the macronuclear product of a developmentally regulated DNA rearrangement in Tetrahymena thermophila, Tlr1, have been cloned. The intrachromosomal rearrangement joins sequences that are separated by more than 13 kb in the micronucleus with the elimination of moderately repeated micronucleus-specific DNA sequences. There is a long, 825-bp, inverted repeat near the micronuclear junctions. The inverted repeat contains two different 19-bp tandem repeats. The 19-bp repeats are associated with each other and with DNA rearrangements at seven locations in the micronuclear genome. Southern blot analysis is consistent with the occurrence of the 19-bp repeats within pairs of larger repeated sequences. Another family member was isolated. The 19-mers in that clone are also in close proximity to a rearrangement junction. We propose that the 19-mers define a small family of developmentally regulated DNA rearrangements having elements with long inverted repeats near the junction sites. We discuss the possibility that transposable elements evolve by capture of molecular machinery required for essential cellular functions.  相似文献   

16.
Ciliates are microbial eukaryotes that separate their nuclear functions into a germline micronucleus and a somatic macronucleus. During development of the macronucleus the genome undergoes a series of reorganization events that includes the precise excision of intervening DNA. Here, we determine the architecture of four loci in the micronuclear and macronuclear genomes of the ciliate Chilodonella uncinata and compare the levels of variation in micronuclear-limited sequences to macronuclear destined sequences at two of these loci. We find that within a population, germline-limited sequences are evolving at the same rate as other putatively neutral sites, but between populations germline-limited sequences are accumulating mutations at a much faster rate than other sites. We also find evidence of macronuclear recombination and incomplete elimination of intervening DNA, which result in increased diversity in the macronuclear genome. Our results support the assertion that the unusual genomic features of ciliates can result in rapid and unpredicted patterns of diversification.  相似文献   

17.
We have measured the reassociation kinetics of DNA from the micronucleus and from the macronucleus of the hypotrichous cillate Oxytricha. The micronuclear DNA reassociates with at least a two-component reaction, indicating the presence of both repeated and non-repeated sequences. The kinetic complexity of micronuclear non-repeated DNA is in the range of 2 to 15 × 1011 daltons; the haploid DNA content of the micronucleus is 4 × 1011 daltons (0.66 pg), measured microspectrophotometrically. The DNA of the macronucleus reassociates as a single second-order reaction, with a kinetic complexity of 3.6 × 1010 daltons. A comparison of the kinetic complexities of micronuclear and macronuclear DNAs suggest a 5 to 30 fold reduction in DNA sequence complexity during the formation of a macronucleus from a micronucleus. Macronuclear DNA is in pleces with an average molecular weight of 2.1 × 106 daltons. Since the kinetic complexity of macronuclear DNA is 3.6 × 1010 daltons, the macronucleus must contain about 17,000 different kinds of DNA pieces.Each macronucleus contains 3.5 × 1013 daltons (58 pg) of DNA, indicating that each sequence must be present about 1000 times per macronucleus or 2000 times per cell.  相似文献   

18.
After conjugation in hypotrichous ciliates, a new macronucleus is produced from a copy of the micronucleus. This transformation involves large-scale reorganization of DNA, with conversion of the chromosomal micronuclear genome into short, gene-sized DNA molecules in the macronucleus. To study directly the changes that occur during this process, we have developed techniques for synchronous mating of large populations of the hypotrichous ciliate Euplotes crassus. Electron microscope studies show that the micronuclear chromosomes are polytenized during the first 20 h of macronuclear development. The polytene chromosomes lack the band-interband organization observed in other hypotrichs and in the Diptera. Polytenization is followed by transectioning of the chromosomes. We isolated DNA at various times of macronuclear development and found that the average molecular weight of the DNA decreases at the time of chromosome transectioning. In addition, we have shown that a small size group of macronuclear DNA molecules (450-550 base pairs) is excised from the chromosomal DNA approximately 10 h later in macronuclear development.  相似文献   

19.
C L Jahn  M F Krikau  S Shyman 《Cell》1989,59(6):1009-1018
The E. crassus Tec1 element is present in greater than 10(4) copies in the micronuclear genome but is absent from the macronuclear genome. During formation of a macronucleus from a micronucleus, a majority of the Tec1 elements appear as extrachromosomal circles. The circular and integrated forms of Tec1 have been characterized by restriction mapping to produce consensus maps and by sequence analysis of the element's termini. The circular forms are resistant to BAL31 and have the restriction map expected if the element excises at the end of its inverted repeats. DNA sequence analysis of a circular form confirms that the inverted repeats are in a head-to-head configuration. Excision of Tec1 occurs very early during macronuclear development as the DNA begins to replicate to form polytene chromosomes.  相似文献   

20.
The DNA in a micronucleus undergoes remarkable rearrangements when it develops into a macronucleus after cell mating in the hypotrichous ciliate. A Rab gene was isolated from the macronuclear plasmid mini-library of Euplotes octocarinatus. A micronuclear version of the Rab gene was amplified by polymerase chain reaction (PCR). The macronuclear DNA molecule carrying the Rab gene is 767 bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Three of the five cysteines are encoded by the opal codon UGA. The deduced protein is a 207-amino acid (aa) with a molecular mass of 23 kDa. The protein shares 36% identity with Rab 1 protein of Plasmodium and yeast. Analysis of the sequences indicated that the micronuclear version of the Rab gene contains two internal eliminated sequences, internal eliminated sequence (IES)1 and IES2. IES1 is flanked by a pair of hepta-nucleotide 5'-AAATTTT-3' direct repeats, and IES2 is flanked by 5'-TA-3' direct repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号