首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transneuronal transport of pseudorabies virus (PRV) from the retina to visual centers that mediate visual discrimination and reflexes requires specific genes in the unique short region of the PRV genome. In contrast, these same viral genes are not required to infect retinorecipient areas of the brain involved in circadian rhythm regulation. In this report, we demonstrate that viral mutants carrying defined deletions of the genes encoding glycoprotein gI or gp63, or both, result in the same dramatic transport defect. Efficient export of either gI or gp63 from the endoplasmic reticulum to the Golgi apparatus in a fibroblast cell line requires the presence of both proteins. We also show that gI and gp63 physically interact, as demonstrated by pulse-chase and sucrose gradient sedimentation experiments. Complex formation is rapid compared with homodimerization of PRV glycoprotein gII. We suggest that gI and gp63 function in concert to affect neurotropism in the rat visual circuitry and that a heterodimer is likely to be the unit of function.  相似文献   

2.
To localize the genes for the major glycoproteins of equine herpesvirus 1 (EHV-1), a library of the EHV-1 genome was constructed in the lambda gt11 expression vector. Recombinant bacteriophage expressing EHV-1 glycoprotein epitopes as fusion products with beta-galactosidase were detected by immunoscreening with monoclonal antibodies specific for each of six EHV-1 glycoproteins. Seventy-four recombinant lambda gt11 clones reactive with EHV-1 monoclonal antibodies were detected among 4 X 10(5) phage screened. Phage expressing determinants on each of the six EHV-1 glycoproteins were represented in the library. Herpesviral DNA sequences contained in lambda gt11 recombinants expressing epitopes of EHV-1 glycoproteins were used as hybridization probes for mapping insert sequences on the viral genome. Genes for five EHV-1 glycoproteins (gp2, gp10, gp13, gp14, and gp21/22a) mapped to the genome L component; only one EHV-1 glycoprotein (gp17/18) was expressed from the unique S region of the genome where genes of several major glycoproteins of other herpesviruses have been located. Two glycoproteins of EHV-1, gp13 and gp14, mapped to positions colinear with genes of major glycoproteins identified in several other alphaherpesviruses (gC- and gB-like glycoproteins, respectively). The genomic locations of other EHV-1 glycoproteins indicated the existence of major glycoproteins of EHV-1 (gp2, gp10, and gp21/22a) for which no genetic homologs have yet been detected in other herpesviruses. The results confirm the general utility of the lambda gt11 expression system for localizing herpesvirus genes and suggest that the genomic positioning of several high-abundance glycoproteins of EHV-1 may be different from that of the prototype alphaherpesvirus, herpes simplex virus.  相似文献   

3.
We have looked for conserved DNA sequences between four herpes simplex virus type 1 (HSV-1) glycoprotein genes encoding gB, gC, gD, and gE and pseudorabies virus (PRV) DNA, HSV-1 DNA fragments representing these four glycoprotein-coding sequences were hybridized to restriction enzyme fragments of PRV DNA by the Southern blot procedure. Specific hybridization was observed only when HSV-1 gB DNA was used as probe. This region of hybridization was localized to a 5.2-kilobase (kb) region mapping at approximately 0.15 map units on the PRV genome. Northern blot (RNA blot) analysis, with a 1.2-kb probe derived from this segment, revealed a predominant hybridizing RNA species of approximately 3 kb in PRV-infected PK15 cells. DNA sequence analysis of the region corresponding to this RNA revealed a single large open reading frame with significant nucleotide homology with the gB gene of HSV-1 KOS 321. In addition, the beginning of the sequenced PRV region also contained the end of an open reading frame with amino acid homology to HSV-1 ICP 18.5, a protein that may be involved in viral glycoprotein transport. This sequence partially overlaps the PRV gB homolog coding sequence. We have shown that the PRV gene with homology to HSV-1 gB encoded the gII glycoprotein gene by expressing a 765-base-pair segment of the PRV open reading frame in Escherichia coli as a protein fused to beta-galactosidase. Antiserum, raised in rabbits, against this fusion protein immunoprecipitated a specific family of PRV glycoproteins of apparent molecular mass 110, 68, and 55 kilodaltons that have been identified as the gII family of glycoproteins. Analysis of the predicted amino acid sequence indicated that the PRV gII protein shares 50% amino acid homology with the aligned HSV-1 gB protein. All 10 cysteine residues located outside of the signal sequence, as well as 4 of 6 potential N-linked glycosylation sites, were conserved between the two proteins. The primary protein sequence for HSV-1 gB regions known to be involved in the rate of virus entry into the cells and cell-cell fusion, as well as regions known to be associated with monoclonal antibody resistance, were highly homologous with the PRV protein sequence. Furthermore, monospecific antibody made against PRV gII immunoprecipitated HSV-1 gB from infected cells. Taken together, these findings suggest significant conservation of structure and function between the two proteins and may indicate a common evolutionary history.  相似文献   

4.
To ascertain the biological functions of different glycoproteins that are nonessential for pseudorabies virus growth in vitro, we have constructed mutants defective in one (or a combination) of these glycoproteins and have examined various aspects of their role in the infective process. We made the following two observations. (i) Glycoproteins gI and gp63 are noncovalently complexed to each other. They are coprecipitated by antisera against either one of these glycoproteins but do not share antigenic determinants: monoclonal antibodies against gp63 do not immunoprecipitate gI from extracts of gp63- mutant-infected cells, and monoclonal antibodies against gI do not immunoprecipitate gp63 from extracts of gI- mutant-infected cells. (ii) Mutants unable to synthesize either gI or gp63 have some common biological characteristics; they have a growth advantage in primary chicken embryo fibroblasts. Furthermore, we have shown previously that in conjunction with glycoprotein gIII, gI and gp63 are necessary for the expression of virulence (T. C. Mettenleiter, C. Schreurs, F. Zuckermann, T. Ben-Porat, and A. S. Kaplan, J. Virol. 62, 2712-2717, 1988). These results show that the functional entity affecting virus replication in chicken embryo fibroblasts, as well as affecting virulence, is the complex between gI and gp63. The gI-gp63 complex of pseudorabies virus does not appear to have Fc receptor activity as does its homolog, the gI-gE complex of herpes simplex virus.  相似文献   

5.
Z Yao  C Grose 《Journal of virology》1994,68(7):4204-4211
Varicella-zoster virus (VZV) glycoprotein gpIV, to be renamed VZV gI, forms a heterodimer with glycoprotein gpI (gE) which functions as an Fc receptor in virus-infected cells. Like VZV gpI (gE), this viral glycoprotein is phosphorylated in cell culture during biosynthesis. In this report, we investigated the nature and specificity of the phosphorylation event involving VZV gpIV (gI). Phosphoamino acid analysis indicated that gpIV (gI) was modified mainly on serine residues. To identify the precise location of the phosphorylation site on the 64-kDa protein, a step-by-step mutagenesis procedures was followed. Initially a tailless mutant was generated, and this truncated product was no longer phosphorylated. Thereafter, point mutations were made within the cytoplasmic tail of gpIV (gI) at potential phosphorylation sites. The phosphorylation site was localized to the following sequence: Ser-Pro-Pro (amino acids 343 to 345). Examination of the point mutants established that serine 343 in the cytoplasmic tail was the major phosphoacceptor. In addition, we found that the prolines located immediately to the C terminus of serine 343 were an integral part of the kinase recognition sequence. This site was located immediately N terminal to a predicted beta-turn secondary structure. By comparison with known substrate consensus sequences for various protein kinases, these data suggested that the phosphorylation of VZV gpIV (gI) was catalyzed by a proline-directed protein kinase. Computer homology analysis of other alphaherpesviruses demonstrated that a similar potential phosphorylation site was highly conserved in the cytoplasmic tails of herpes simplex virus type 1 gI, equine herpesvirus type 1 gI, and pseudorabies virus gp63.  相似文献   

6.
7.
8.
Mo C  Suen J  Sommer M  Arvin A 《Journal of virology》1999,73(5):4197-4207
Varicella-zoster virus (VZV) is an alphaherpesvirus that is the causative agent of chickenpox and herpes zoster. VZV open reading frame 5 (ORF5) encodes glycoprotein K (gK), which is conserved among alphaherpesviruses. While VZV gK has not been characterized, and its role in viral replication is unknown, homologs of VZV gK in herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) have been well studied. To identify the VZV ORF5 gene product, we raised a polyclonal antibody against a fusion protein of ORF5 codons 25 to 122 with glutathione S-transferase and used it to study the protein in infected cells. A 40,000-molecular-weight protein was detected in cell-free virus by Western blotting. In immunogold electron microscopic studies, VZV gK was in enveloped virions and was evenly distributed in the cytoplasm in infected cells. To determine the function of VZV gK in virus growth, a series of gK deletion mutants were constructed with VZV cosmid DNA derived from the Oka strain. Full and partial deletions in gK prevented viral replication when the gK mutant cosmids were transfected into melanoma cells. Insertion of the HSV-1 (KOS) gK gene into the endogenous VZV gK site did not compensate for the deletion of VZV gK. The replacement of VZV gK at a nonnative AvrII site in the VZV genome restored the phenotypic characteristics of intact recombinant Oka (rOka) virus. Moreover, gK complementing cells transfected with a full gK deletion mutant exhibited viral plaques indistinguishable from those of rOka. Our results are consistent with the studies of gK proteins of HSV-1 and PRV showing that gK is indispensable for viral replication.  相似文献   

9.
Experience with cloning pseudorabies virus (PRV) DNA in the lambda gt11 phage vector has shown that there are special requirements for the antisera used in screening the libraries, in addition to the requirement that the antisera recognize proteins on a Western blot. Initial screening of a lambda gt11 library of sheared PRV DNA fragments in Escherichia coli for expression of PRV antigens using PRV hyperimmune antisera was unsuccessful. It was only after screening the library with antisera raised against PRV proteins eluted from sodium dodecyl sulfate (SDS)-polyacrylamide (PA) gels that positive results were obtained. These "gel-slice" antisera (GSA) were equivalent in potency to hyperimmune antisera in standard immunoassays (including ELISA, immunoprecipitation, Western blots, and neutralization of virus), but only the GSA could recognize PRV fusion proteins expressed by recombinant lambda gt11 phage. This difference was seen despite the fact that hyperimmune antisera performed satisfactorily on Western blots of denatured PRV-infected cell extracts. These results show that the efficiency of screening expression libraries in E. coli can be improved if antibodies are raised against denatured proteins.  相似文献   

10.
The Bartha vaccine strain of pseudorabies virus has a deletion in the short unique (Us) region of its genome which includes the genes that code for glycoproteins gI and gp63 (E. Petrovskis, J. G. Timmins, T. M. Gierman, and L. E. Post, J. Virol. 60:1166-1169, 1986). Restoration of an intact Us to the Bartha strain enhances its ability to be released from infected rabbit kidney cells and increases the size of the plaques formed on these cells (T. Ben-Porat, J. M. DeMarchi, J. Pendrys, R. A. Veach, and A. S. Kaplan, J. Virol. 57:191-196, 1986). To determine which gene function plays a role in virus release from rabbit kidney cells, deletions were introduced into the genomes of both wild-type virus and the "rescued" Bartha strain (Bartha strain to which an intact Us had been restored) that abolish the expression of either the gI gene alone or both gI and gp63 genes. The effect of these deletions on the phenotype of the viruses was studied. Deletion mutants of wild-type virus defective in either gI or gI and gp63 behave like wild-type virus with respect to virus release and plaque size on rabbit kidney cells. Deletion of gI from the rescued Bartha strain, however, strongly affects virus release and causes a decrease in plaque size. We conclude that gI affects virus release but that at least one other viral function also affects this process. This function is defective in the Bartha strain but not in wild-type virus; in its absence gI is essential to efficient release of the virus from rabbit kidney cells.  相似文献   

11.
gIII, the major envelope glycoprotein of pseudorabies virus (PRV), shares approximately 20% amino acid similarity with glycoprotein gC of herpes simplex virus type 1 (HSV-1) and HSV-2. We describe here our first experiments on the potential conservation of function between these two genes and gene products. We constructed PRV recombinants in which the gIII gene and regulatory sequences have been replaced with the entire HSV-1 gC gene and its regulatory sequences. The gC promoter functions in the PRV genome, and authentic HSV-1 gC protein is produced, albeit at a low level, in infected cells. The gC protein is present at the cell surface but cannot be detected in the PRV envelope.  相似文献   

12.
The varicella-zoster virus (VZV) open reading frame 61 (ORF61) protein is thought to be the homolog of herpes simplex virus type 1 (HSV-1) ICP0, based on gene location and limited amino acid homology. However, HSV-1 ICP0 trans activates HSV-1 genes, while VZV ORF61 protein trans represses the function of VZV trans activators on VZV promoters in transient expression assays. To investigate the functional relatedness of HSV-1 ICP0 and VZV ORF61 protein, we established Vero and MeWo cell lines which stably express VZV ORF61 under the control of a metallothionein promoter and performed complementation studies with an HSV-1 ICP0 deletion mutant (7134). Mutant 7134 is impaired for plaque formation and replication at a low multiplicity of infection in cell culture, but these defects were complemented by up to 200-fold in Vero cell lines expressing VZV ORF61. Likewise, the efficiency of plaque formation was improved by up to 100-fold in MeWo cell lines expressing VZV ORF61. A cell line expressing another VZV immediate-early gene product (ORF62) was unable to complement mutant 7134. HSV-1 mutants which are deleted for other HSV-1 immediate-early gene products (ICP4, ICP27) were unable to grow in VZV ORF61-expressing cell lines. These results indicate that, despite marked differences in their sequences and in effects on their cognate promoters in transient expression assays, VZV ORF61 protein is the functional homolog of HSV-1 ICP0.  相似文献   

13.
Alphaherpesviruses spread rapidly through dermal tissues and within synaptically connected neuronal circuitry. Spread of virus particles in epithelial tissues involves movement across cell junctions. Herpes simplex virus (HSV), varicella-zoster virus (VZV), and pseudorabies virus (PRV) all utilize a complex of two glycoproteins, gE and gI, to move from cell to cell. HSV gE/gI appears to function primarily, if not exclusively, in polarized cells such as epithelial cells and neurons and not in nonpolarized cells or cells that form less extensive cell junctions. Here, we show that HSV particles are specifically sorted to cell junctions and few virions reach the apical surfaces of polarized epithelial cells. gE/gI participates in this sorting. Mutant HSV virions lacking gE or just the cytoplasmic domain of gE were rarely found at cell junctions; instead, they were found on apical surfaces and in cell culture fluids and accumulated in the cytoplasm. A component of the AP-1 clathrin adapter complexes, mu1B, that is involved in sorting of proteins to basolateral surfaces was involved in targeting of PRV particles to lateral surfaces. These results are related to recent observations that (i) HSV gE/gI localizes specifically to the trans-Golgi network (TGN) during early phases of infection but moves out to cell junctions at intermediate to late times (T. McMillan and D. C. Johnson, J. Virol., in press) and (ii) PRV gE/gI participates in envelopment of nucleocapsids into cytoplasmic membrane vesicles (A. R. Brack, B. G. Klupp, H. Granzow, R. Tirabassi, L. W. Enquist, and T. C. Mettenleiter, J. Virol. 74:4004-4016, 2000). Therefore, interactions between the cytoplasmic domains of gE/gI and the AP-1 cellular sorting machinery cause glycoprotein accumulation and envelopment into specific TGN compartments that are sorted to lateral cell surfaces. Delivery of virus particles to cell junctions would be expected to enhance virus spread and enable viruses to avoid host immune defenses.  相似文献   

14.
Polyvalent rabbit antisera against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), cytomegalovirus (CMV), and Epstein-Barr virus (EBV), monospecific antisera against affinity-purified HSV-2 glycoproteins gB and gG, and a panel of monoclonal antibodies against HSV and EBV proteins were used to analyze cross-reactive molecules in cells infected with the four herpesviruses. A combination of immunoprecipitation and Western blotting with these reagents was used to determine that all four viruses coded for a glycoprotein that cross-reacted with HSV-1 gB. CMV coded for proteins that cross-reacted with HSV-2 gC, gD, and gE. Both CMV and EBV coded for proteins that cross-reacted with HSV-2 gG. Antigenic counterparts to the p45 nucleocapsid protein of HSV-2 were present in HSV-1 and CMV, and counterparts of the major DNA-binding protein and the ribonucleotide reductase of HSV-1 were present in all the viruses. The EBV virion glycoprotein gp85 was immunoprecipitated by antisera to HSV-1, HSV-2, and CMV. Antisera to CMV and EBV neutralized the infectivity of both HSV-1 and HSV-2 at high concentrations. This suggests that cross-reactivity between these four human herpesviruses may have pathogenic as well as evolutionary significance.  相似文献   

15.
Role of a structural glycoprotein of pseudorabies in virus virulence.   总被引:15,自引:14,他引:1       下载免费PDF全文
The virulence of deletion mutants of pseudorabies virus defective in the expression of glycoprotein gI, gp63, or both was tested in 1-day-old chickens and young pigs. In the absence of expression of gI, the virulence of a fully virulent laboratory strain, PrV(Ka), for 1-day-old chickens was reduced approximately fourfold. Inactivation of glycoprotein gp63 appeared also to affect the virulence of PrV(Ka) only slightly, as did inactivation of both gI and gp63. The level of reduction in virulence, however, was considerably more marked in Bartha 43/25aB4, a less virulent virus strain. Inactivation of the expression of gI in Bartha 43/25aB4 reduced virulence for chickens at least 100-fold. The results obtained when the virulence of the mutants for pigs was determined were compatible with those obtained for chickens. These results indicate that gI plays a role in virulence, but that it does so in conjunction with at least one other viral function (a function that is defective in Bartha 43/25aB4).  相似文献   

16.
The genome of varicella-zoster virus (VZV) encodes at least three major glycoprotein genes. Among viral gene products, the gC gene products are the most abundant glycoproteins and induce a substantial humoral immune response (Keller et al., J. Virol. 52:293-297, 1984). We utilized two independent approaches to map the gC gene. Small fragments of randomly digested VZV DNA were inserted into a bacterial expression vector. Bacterial colonies transformed by this vector library were screened serologically for antigen expression with monoclonal antibodies to gC. Hybridization of the plasmid DNA from a gC antigen-positive clone revealed homology to the 3' end of the VZV Us segment. In addition, mRNA from VZV-infected cells was hybrid selected by a set of VZV DNA recombinant plasmids and translated in vitro, and polypeptide products were immunoprecipitated by convalescent zoster serum or by monoclonal antibodies to gC. This analysis revealed that the mRNA encoding a 70,000-dalton polypeptide precipitable by anti-gC antibodies mapped to the HindIII C fragment, which circumscribes the entire Us region. We conclude that the VZV gC glycoprotein gene maps to the 3' end of the Us region and is expressed as a 70,000-dalton primary translational product. These results are consistent with the recently reported DNA sequence of Us (A.J. Davison, EMBO J. 2:2203-2209, 1983). Furthermore, glycosylation appears not to be required for a predominant portion of the antigenicity of gC glycoproteins. We also report the tentative map assignments for eight other VZV primary translational products.  相似文献   

17.
We have constructed a recombinant baculovirus expressing the herpes simplex virus type 1 (HSV-1) glycoprotein I (gI). Sf9 cells infected with this recombinant virus synthesized gI-related polypeptides with apparent molecular sizes of 52 and 56 kDa. The recombinant gI appeared to be glycosylated, since it was susceptible to both tunicamycin and endoglycosidase H, and the expressed gI was transported to the surface of infected cells as judged by indirect immunofluorescence. Antibodies to the recombinant gI raised in mice neutralized HSV-1 infectivity. Finally, we show here for the first time that vaccination with gI can protect mice against HSV-1 challenge.  相似文献   

18.
19.
To localize gene that may encode immunogens potentially important for recombinant vaccine design, we have analysed a region of the equine herpesvirus type-1 (EHV-1) genome where a glycoprotein-encoding gene had previously been mapped. The 4707-bp BamHI-EcoRI fragment from the short unique region of the EHV-1 genome was sequenced. This sequence contains three entire open reading frames (ORFs), and portions of two more. ORF1 codes for 161 amino acids (aa), and represents the C terminus of a possible membrane-bound protein. ORF2 (424 aa) and ORF3 (550 aa) are potential glycoprotein-encoding genes; the predicted aa sequences contain possible signal sequences, N-linked glycosylation sites and transmembrane domains; they also show homology to the glycoproteins gI and gE of herpes simplex virus type-1 (HSV-1), and the related proteins of pseudorabies virus and varicella-zoster virus. The predicted aa sequence of ORF4 shares no homology with other known herpesvirus proteins, but the nucleotide sequence shows a high level of homology with the corresponding region of the EHV-4 genome. ORF5 may be related to US9 of HSV-1.  相似文献   

20.
Varicella-zoster virus (VZV) encodes at least six glycoproteins. Glycoprotein I (gI), the product of open reading frame 67, is a 58- to 62-kDa glycoprotein found in VZV-infected cells. We constructed two VZV gI deletion mutants. Immunoprecipitation of VZV gE from infected cells indicated that cells infected with VZV deleted for gI expressed a gE that was larger (100 kDa) than that expressed in cells infected with the parental virus (98 kDa). Cell-associated or cell-free VZV deleted for gI grew to lower titers in melanoma cells than did parental VZV. While VZV deleted for gI replicated in other human cells, the mutant virus replicated to very low titers in primary guinea pig and monkey cells and did not replicate in Vero cells. When compared with the parental virus, rescued viruses, in which the gI deletion was restored with a wild-type allele, showed a similarly sized gE and comparable growth patterns in melanoma and Vero cells. VZV deleted for gI entered Vero cells; however, viral DNA synthesis was impaired in these cells. The VZV gI mutant was slightly impaired for adsorption to human cells. Thus, VZV gI is required for replication of the virus in Vero cells, for efficient replication of the virus in nonhuman cells, and for normal processing of gE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号