首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Benzofuroquinolinediones (7c and 7d) were synthesized by base-catalyzed condensation of dichloroquinolinediones with phenolic derivatives. Their dialkylaminoalkoxy derivatives (8i-8p) were prepared by reaction with various dialkylaminoalkyl chlorides. The cytotoxicity of the synthesized compounds was evaluated against eight types of human cancer cell lines, and their topoisomerase II inhibition was assessed. In general, the cytotoxicity of benzofuroquinolinediones (8i-8p) was similar or superior to that of doxorubicin and showed more potent inhibitory activity than naphthofurandiones (8a-8h). Also, most of the compounds exhibited excellent topoisomerase II inhibitory activity at a concentration of 5 microM and two compounds, 8d and 8i, showed IC50 values of 1.19 and 0.68 microM, respectively, and were much more potent than etoposide (IC50=78.4 microM), but similar to doxorubicin (IC50=2.67 microM). However their inhibitory activity on topoisomerase I was lower, and 8d and 8i showed IC50 values of 42.0 and 64.3 microM, respectively.  相似文献   

2.
In order to study the double-strand DNA passage reaction of eukaryotic type II topoisomerases, a quantitative assay to monitor the enzymic conversion of supercoiled circular DNA to relaxed circular DNA was developed. Under conditions of maximal activity, relaxation catalyzed by the Drosophila melanogaster topoisomerase II was processive and the energy of activation was 14.3 kcal . mol-1. Removal of supercoils was accompanied by the hydrolysis of either ATP or dATP to inorganic phosphate and the corresponding nucleoside diphosphate. Apparent Km values were 200 microM for pBR322 plasmid DNA, 140 microM for SV40 viral DNA, 280 microM for ATP, and 630 microM for dATP. The turnover number for the Drosophila enzyme was at least 200 supercoils of DNA relaxed/min/molecule of topoisomerase II. The enzyme interacts preferentially with negatively supercoiled DNA over relaxed molecules, is capable of removing positive superhelical twists, and was found to be strongly inhibited by single-stranded DNA. Kinetic and inhibition studies indicated that the beta and gamma phosphate groups, the 2'-OH of the ribose sugar, and the C6-NH2 of the adenine ring are important for the interaction of ATP with the enzyme. While the binding of ATP to Drosophila topoisomerase II was sufficient to induce a DNA strand passage event, hydrolysis was required for enzyme turnover. The ATPase activity of the topoisomerase was stimulated 17-fold by the presence of negatively supercoiled DNA and approximately 4 molecules of ATP were hydrolyzed/supercoil removed. Finally, a kinetic model describing the switch from a processive to a distributive relaxation reaction is presented.  相似文献   

3.
DNA topoisomerases have been shown to be important therapeutic targets in cancer chemotherapy. We found that KT6006 and KT6528, synthetic antitumor derivatives of indolocarbazole antibiotic K252a, were potent inducers of a cleavable complex with topoisomerase I. In DNA cleavage assay using purified calf thymus DNA topoisomerase I and supercoiled pBR322 DNA, KT6006 induced topoisomerase I mediated DNA cleavage in a dose-dependent manner at drug concentrations up to 50 microM, while DNA cleavage induced by KT6528 was saturated at 5 microM. The maximal amount of nicked DNA produced by KT6006 was more than 50% of substrate DNA, which was comparable to that of camptothecin. Heat treatment (65 degrees C) of the reaction mixture containing these compounds and topoisomerase I resulted in a substantial reduction in DNA cleavage, suggesting that topoisomerase I mediated DNA cleavage induced by KT6006 and KT6528 is through the mechanism of stabilizing the reversible enzyme-DNA "cleavable complex". Both KT6006 and KT6528 did not induce topoisomerase II mediated DNA cleavage in vitro. KT6006 and KT6528 were found to induce nearly identical topoisomerase I mediated DNA cleavage patterns, which was distinctly different from that with camptothecin. In contrast to the similarity between KT6006 and KT6528 in their structures and the nature of their cleavable complex with topoisomerase I, these drugs have different properties with respect to their interaction with DNA: KT6006 is a very weak intercalator whereas KT6528 is a strong intercalator with potentials comparable to that of adriamycin. These results indicate that KT6006 and KT6528 represent a new distinct class of mammalian DNA topoisomerase I active antitumor drugs.  相似文献   

4.
A type II DNA topoisomerase has been partially purified from calf thymus mitochondria by a combination of differential centrifugation and column chromatography. The mitochondrial enzyme was inhibited by amsacrine (m-AMSA) slightly at 0.5 microM, significantly at 5.0 microM, and completely at 50 microM. A similar profile was obtained with teniposide (VM-26) although the latter drug was not quite as potent an inhibitor as the former. P4 unknotting assays of the purified nuclear type II topoisomerase in the presence of m-AMSA and VM-26 indicated that the mitochondrial and nuclear enzymes behaved similarly, although the mitochondrial enzyme appeared to be inhibited more strongly.  相似文献   

5.
Camptothecin (CPT), a plant alkaloid with antitumor activity, is a specific inhibitor of eukaryotic DNA topoisomerase I. We have previously isolated and characterized a CPT-resistant topoisomerase I isolated from a CPT-resistant human leukemia cell line, CPT-K5. cDNA clones of topoisomerase I were isolated from the CPT-resistant and the parental CPT-sensitive cell lines, respectively. Sequencing of the clones identified two mutations in the cDNA isolated from the resistant cells, which cause amino acid changes from aspartic acid to glycine at residues 533 and 583 of the parental topoisomerase I. When the CPT-K5 topoisomerase I was expressed in E. coli as a fusion protein with Staphylococcal Protein A fragment, the activity was resistant to CPT at a dose level up to 125 microM, whereas the parental fusion protein was sensitive to CPT as low as 1 microM. The resistance index (greater than 125) of the CPT-K5 fusion topoisomerase I is similar to that of the native CPT-K5 topoisomerase I. These results indicate that either or both of the two amino acid changes identified in the mutant enzyme is responsible for the resistance to CPT.  相似文献   

6.
Intercalator-induced DNA double-strand breaks (DSB) presumably represent topoisomerase II DNA cleavage sites in mammalian cells. Isolated L1210 cell nuclei were used to determine the saturability of this reaction at high drug concentrations. 4'-(9-Acridinylamino)methanesulfon-m-anisidide (m-AMSA) and 5-iminodaunorubicin (5-ID) both produced DSB in a concentration-dependent manner, and the production of these breaks leveled off above 10 microM. Addition of m-AMSA to 5-ID-treated nuclei did not raise the plateau level. Thus, both drugs seemed to interact similarly on identical targets. The ellipticine derivative 2-methyl-9-hydroxyellipticinium (2-Me-9-OH-E+) had two effects on the production of DSB. Below 10 microM, 2-Me-9-OH-E+ produced DSB as did ellipticine, m-AMSA, or 5-ID. Above 10 microM, 2-Me-9-OH-E+ did not induce DSB and inhibited the DSB induced by m-AMSA, 5-ID, or ellipticine. 2-Me-9-OH-E+ and m-AMSA competed with each other to produce either double-strand break formation (m-AMSA-induced reaction) or double-strand break inhibition (2-Me-9-OH-E+-induced reaction at concentrations greater than 10 microM). Because these results were reproduced in experiments using DNA topoisomerase II isolated from L1210 nuclei, it is likely that the intercalator-induced protein-associated DNA breaks detected by alkaline elution in nuclei represent DNA topoisomerase II-DNA complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

8.
Curcumin, the major active component of the spice turmeric, is recognised as a safe compound with great potential for cancer chemoprevention and cancer therapy. It induces apoptosis, but its initiation mechanism remains poorly understood. Curcumin has been assessed on the human cancer cell lines, TK-10, MCF-7 and UACC-62, and their IC50 values were 12.16, 3.63, 4.28 microM respectively. The possibility of this compound being a topoisomerase II poison has also been studied and it was found that 50 microM of curcumin is active in a similar fashion to the antineoplastic agent etoposide. These results point to DNA damage induced by topoisomerase II poisoning as a possible mechanism by which curcumin initiates apoptosis, and increase the evidence suggesting its possible use in cancer therapy.  相似文献   

9.
We have examined the influence of VM26 (teniposide), a specific inhibitor of mammalian type II DNA topoisomerase, on the replication of SV40 minichromosomes in vitro. The replication system we used consists of replicative intermediate SV40 chromatin as substrate which is converted to mature SV40 chromatin in the presence of ATP, deoxynucleotides and a protein extract from uninfected cells. The addition of 100 microM VM26 to this system reduces DNA synthesis to 70 to 80 percent of the control and leads to an accumulation of 'late replicative intermediates'. The VM26 induced block of replication was not released by the addition of large quantities of type I DNA topoisomerase. We conclude, that type II DNA topoisomerase is essential for the final replication steps leading from late Cairns structures of replicative intermediates to monomeric minichromosomes. It appears that type I DNA topoisomerase can function as a swivelase during most of the replicative elongation phase, but must later be replaced by type II DNA topoisomerase.  相似文献   

10.
An anucleated cell system has been used for the first time to study mitochondrial topoisomerase activity. Mitochondrial extracts from human blood platelets contained type I topoisomerase. The type I classification was based on ATP-independent activity, inhibition by ATP or camptothecin, and the lack of inhibition by novobiocin. Platelet mitochondrial topoisomerase I relaxation activity was inhibited linearly by increasing concentrations of EGTA. Topoisomerase activity greater than 90% inhibited by 175 microM EGTA was partially restored to 16 and 50% of the initial level of activity by the subsequent addition of 50 and 100 microM Ca2+, respectively. Additionally, results from studies of partially purified platelet mitochondrial topoisomerase I were consistent with the crude extract data. This work supports the hypothesis that platelet mitochondria contain a type I topoisomerase that is biochemically distinct from that previously isolated and characterized from cell nuclei.  相似文献   

11.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

12.
Etoposide, a nonintercalative antitumor drug, is known to inhibit topoisomerase II. Its effects have been tested in concanavalin A stimulated splenocytes, a system of cell proliferation in which topoisomerase II is induced. The primary effect of etoposide was a strong inhibition of DNA synthesis and the production of reversible DNA breaks, presumably associated with topoisomerase II. However, prolonged (20 h) contact with the drug resulted in a secondary fragmentation by irreversible double-strand breaks that yielded unusually small DNA fragments. Surprisingly, the same effect was obtained with novobiocin, which does not produce topoisomerase II associated DNA breaks. Moreover, long-term treatment with camptothecin, a specific inhibitor of topoisomerase I which is known to induce single-strand breaks in vitro and in vivo, also produced double-strand breaks and DNA fragmentation into small pieces. These findings suggest that prolonged treatment of proliferating splenocytes by etoposide and other topoisomerase inhibitors induced DNA fragmentation by a mechanism that does not directly involve topoisomerases.  相似文献   

13.
Kingma PS  Burden DA  Osheroff N 《Biochemistry》1999,38(12):3457-3461
Despite the prevalence of topoisomerase II-targeted drugs in cancer chemotherapy and the impact of drug resistance on the efficacy of treatment, interactions between these agents and topoisomerase II are not well understood. Therefore, to further define interactions between anticancer drugs and the type II enzyme, a nitrocellulose filter assay was used to characterize the binding of etoposide to yeast topoisomerase II. Results indicate that etoposide binds to the enzyme in the absence of DNA. The apparent Kd value for the interaction was approximately 5 microM drug. Etoposide also bound to ytop2H1012Y, a mutant yeast type II enzyme that is approximately 3-4-fold resistant to etoposide. However, the apparent Kd value for the drug (approximately 16 microM) was approximately 3 times higher than that determined for wild-type topoisomerase II. Although it has been widely speculated that resistance to topoisomerase II-targeted anticancer agents results from a decreased drug-enzyme binding affinity, these data provide the first direct evidence in support of this hypothesis. Finally, the ability of yeast topoisomerase II to bind etoposide was dependent on the presence of the hydroxyl moiety of Tyr783, suggesting specific interactions between etoposide and the active site residue that is involved in DNA scission.  相似文献   

14.
We chemically synthesized epolactaene, a neuritogenic compound in human neuroblastoma cells, and investigated its biochemical action in vitro. Epolactaene and its derivatives selectively inhibited the activities of mammalian DNA polymerase alpha and beta and human DNA topoisomerase II, with IC(50) values of 25, 94, and 10 microM, respectively. By comparison with its structural derivatives, the long alkyl side chain in epolactaene seemed to have an important role in this inhibitory effect. The compound did not influence the activities of plant or prokaryotic DNA polymerases or of other DNA metabolic enzymes such as telomerase, RNA polymerase, and deoxyribonuclease I. Epolactaene did not intercalate into DNA. These results suggested that the neuritogenic compound epolactaene influences both DNA polymerases and topoisomerase II despite the dissimilarity in both structure and properties of these two enzymes and that inhibition of these enzymes could be related to the neuritogenic effect in human neuroblastoma cells. The relationship between the neuritogenic mechanism and cell cycle regulation by epolactaene was also discussed.  相似文献   

15.
D J Fernandes  M K Danks  W T Beck 《Biochemistry》1990,29(17):4235-4241
CEM leukemia cells selected for resistance to VM-26 (CEM/VM-1) are cross-resistant to various other DNA topoisomerase II inhibitors but not to Vinca alkaloids. Since DNA topoisomerase II is a major protein of the nuclear matrix, we asked if alterations in nuclear matrix topoisomerase II might be important in this form of multidrug resistance. Pretreatment of drug-sensitive CEM cells for 2 h with either 5 microM VM-26 or 3 microM m-AMSA reduced the specific activity of newly replicated DNA on the nuclear matrix by 75 and 50%, respectively, relative to that of the bulk DNA. However, neither VM-26 nor m-AMSA affected the relative specific activity of nascent DNA isolated from the nuclear matrices of drug-resistant CEM/VM-1 cells. The decatenating and unknotting activities of DNA topoisomerase II were 6- and 7-fold lower, respectively, in the nuclear matrix preparations from the CEM/VM-1 cells compared to parental CEM cells. Western blot analysis revealed that the amount of immunoreactive topoisomerase II in the nuclear matrices of the CEM/VM-1 cells was decreased 3.2-fold relative to that in CEM cells, but there was no significant difference in the amount of enzyme present in the nonmatrix (1.5 M salt soluble) fractions of nuclei from these cell lines. Increasing the NaCl concentration used in the matrix isolation procedure from 0.2 to 1.8 M resulted in a progressive decrease in the specific activity of topoisomerase II in matrices of CEM/VM-1 but not CEM cells, which suggested that the association of the enzyme with the matrix is altered in the resistant cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thiopurines and topoisomerase II-targeted drugs (e.g., etoposide) are widely used anticancer drugs. However, topoisomerase II-targeted drugs can cause acute myeloid leukemia, with the risk of this secondary leukemia linked to a genetic defect in thiopurine catabolism. Chronic thiopurines result in thioguanine substitution in DNA. The effect of these substitutions on DNA topoisomerase II activity is not known. Our goal was to determine whether deoxythioguanosine substitution alters DNA cleavage stabilized by human topoisomerase II. We studied four variations of a 40 mer oligonucleotide with a topoisomerase II cleavage site, each with a single deoxythioguanosine in a different position relative to the cleavage site (-1 or +2 in the top and +2 or +4 in the bottom strand). Deoxythioguanosine substitution caused position-dependent quantitative effects on cleavage. With the -1 or +2 top and +2 or +4 bottom substitutions, mean topoisomerase II-induced cleavage was 0.6-, 2.0-, 1.1-, and 3.3-fold that with the wild-type substrate (P=0. 011, < 0.008, 0.51, and < 0.001, respectively). In the presence of 100 microM etoposide, cleavage was enhanced for wild-type and all thioguanosine-modified substrates relative to no etoposide, with the +4 bottom substitution showing greater etoposide-induced cleavage than the wild-type substrate (P=0.015). We conclude that thioguanine incorporation alters the DNA cleavage induced by topoisomerase II in the presence and absence of etoposide, providing new insights to the mechanism of thiopurine effect and on the leukemogenesis of thiopurines, with or without topoisomerase inhibitors.  相似文献   

17.
The novel DNA interactive isoquinolino[5,4-ab]phenazine derivatives were designed and synthesized. Their inhibitory abilities toward topoisomerase I, antitumor activities and DNA photo-cleaving abilities were examined. The substituents at peri sites of two phenazine N atoms played very important roles for all these biological activities. At a concentration of 100 microM, all these phenazine derivatives (but A2 and A6) exhibited an inhibitory activity toward topoisomerase I. A6 had efficient antitumor activities against both human lung cancer cell (A549) and murine leukemia cell (P388). A1, A5, and A6 exhibited antitumor activities selectively against P388. A2 was the most efficient DNA photocleaver, which had converted supercoiled DNA from form I to form II at <1 microM. Under anaerobic conditions, the electron transfer mechanism mainly contributed to DNA photo-induced cleavage, while under aerobic conditions, superoxide anion was also involved in this process.  相似文献   

18.
Fluoroquinolones, represented by ciproxacin and norfloxacin, are well-known clinical antimicrobial agents, and their phenyl ring expanded quinophenoxazines are reported as possible antitumor active compounds. These quinophenoxazines are known to inhibit DNA topoisomerase II essential for cell replication cycle. But there were no reports for topoisomerase I inhibition study for these compounds. In this report, we have prepared a few quinophenoxazine analogues and tested their topoisomerases I and II inhibitory activities and cytotoxicity. From the result, we found that quinophenoxazine analogues possessed strong topoisomerase I inhibitory capacity as well as topoisomerase II inhibition. Among the compounds prepared, A-62176 analogues showed strong topoisomerases I and II inhibitory activities. Interestingly, compound 8 missing the 3-aminopyrrolidine moiety at C2 position has similar potent inhibitory capacity against topoisomerases I and II at higher concentrations (20 and 10 microM, respectively). But compound 8 inhibited topoisomerase I function more selectively at lower concentration, 2 microM. Our observation might strongly implicate that fluoroquinophenoxazines can be developed as efficient topoisomerase I inhibitor with the elaborate modification.  相似文献   

19.
The drug disulfiram is a thiol-reacting drug that is relatively nontoxic when used alone and has been used in the therapy of alcohol abuse for more than 40 years. Several effects of this drug have been reported for DNA synthesis and cell proliferation. In this study, the inhibitory effect of disulfiram on topoisomerase I and II activity was investigated by measuring the relaxation of superhelical plasmid pBR322 DNA. Disulfiram (1-100 microM) inhibited topoisomerase I and II in a concentration-dependent manner (IC(50) congruent with 42 +/- 8 and 30 +/- 9 microM, respectively). Consistent with the assumption that a thiol residue is involved, dithiothreitol (1 mM) markedly prevented the inhibitory effect of disulfiram on the activity of both classes of topoisomerases. These findings might explain certain aspects of disulfiram toxicity and encourage new studies to determine the usefulness of this drug and its analogues as antineoplastic agent.  相似文献   

20.
Some novel fused heterocyclic compounds of 2, 5-disubstituted-benzoxazole and benzimidazole derivatives, which were previously synthesized by our group, were investigated for their inhibitory activity on both eukaryotic DNA topoisomerase I and II in a cell free system. 2-Phenoxymethylbenzimidazole (17), 5-amino-2-(p-fluorophenyl)benzoxazole (3), 5-amino-2-(p-bromophenyl)benzoxazole (5), 5-nitro-2-phenoxymethyl-benzimidazole (18), 2-(p-chlorobenzyl)benzoxazole (10) and 5-amino-2-phenylbenzoxazole (2) were found to be more potent as eukaryotic DNA topoisomerase I poisons than the reference drug camptothecin having IC(50) values of 14.1, 132.3, 134.1, 248, 443.5, and 495 microM, respectively. 5-Chloro-2-(p-methylphenyl)benzoxazole (4), 2-(p-nitrobenzyl)benzoxazole (6) and 5-nitro-2-(p-nitrobenzyl)benzoxazole (8) exhibited significant activity as eukaryotic DNA topoisomerase II inhibitors, having IC(50) values of 22.3, 17.4, 91.41 microM, respectively, showing higher potency than the reference drug etoposide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号