首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml−1. For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml−1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.  相似文献   

2.
ε-Caprolactone is an industrially important intermediate produced in multi-10,000 ton scale annually with broad applications. We report on a whole-cell biocatalytic conversion of cyclohexanol to ε-caprolactone using the combination of alcohol dehydrogenase (ADH) with two stability-improved variants (QM and M15) of the Baeyer-Villiger monooxygenase CHMO with a special focus on process development at the 200 mM scale. Influence of parameters such as volumetric mass transfer co-efficient, stirrer speed and catalytic loading (amount of E. coli whole-cells expressing ADH and CHMO) on the process efficiency were studied and optimised. This resulted in over 98% conversion, a product titer of 20 g L–1 and an isolated product amount of 9.1 g (80%). This corresponds to a space-time yield of 1.1 g L–1 h−1 and a reaction yield (mole of product per mole substrate) of 0.9. Comparing the two CHMO variants a significant difference in catalytic yield (weight of product to weight of catalyst; 0.6 vs 0.3) was observed without any inherent changes in the process. Hence, the reported process can accommodate in the future improved variants of the CHMO.  相似文献   

3.
《Life sciences》1993,52(8):PL55-PL60
Alfentanil-midazolam analgesic interactions were studied in rats with continuous infusions or bolus injections of the drugs. Analgesia was determined by measuring the threshold of motor response to noxious pressure. The continous constant-rate infusion of alfentanil demonstrated that after an initial peak, the analgesia profoundly declined due to the development of acute tolerance. When alfentanil (250 μg·kg−1·h−1) was given together with midazolam (3 mg·kg−1·h−1), the decline in the analgesic effect of alfentanil was attenuated. Following the 4 h period of the constant-rate (250 μg·kg−1·h−1) infusion of alfentanil, when acute tolerance was already developed, midazolam (3 mg·kg−1) given as a bolus injection enhanced the alfentanil-induced anesthesia. At the same time, when alfentanil was given as a bolus injection (30 μg·kg−1) with or without midazolam (3 mg·kg−1) also by bolus injection, no changes were seen to indicate an enhancement of the analgesic effect of alfentanil by midazolam. The results suggest that midazolam attenuates the development of acute tolerance to the analgesic effect of alfentanil.  相似文献   

4.
Although l-DOPA (l-3,4-dihydroxyphenylalanine) is widely used as a drug for Parkinson's disease, there are critical drawbacks in the commercial synthetic method such as low conversion rate, poor productivity, and long operational time. In order to overcome these limitations, a novel electroenzymatic system using tyrosinase/carbon nanopowder/polypyrrole composite as a working cathode was reported with the outstanding conversion rate up to 95.9%. However, the productivity was still limited due to a low solubility of the substrate l-tyrosine in aqueous phase. Herein, we demonstrated a novel strategy for enhancing the productivity by employing well-dispersed l-tyrosine as the substrate. When using well-dispersed l-tyrosine, not only the concentration of the substrate was increased to 90.6 gL−1 in aqueous phase but also the productivity was enhanced up to 15.3 gL−1 h−1. We also determined kinetic parameters in the electroenzymatic system and the kinetic results revealed that the outstanding conversion rate was based on the fast electrical reduction of the by-product to l-DOPA. Thus the electroenzymatic synthesis using well-dispersed l-tyrosine can be a potential candidate as a novel process for l-DOPA synthesis.  相似文献   

5.
The anti‐allergic drug, N‐(3,4‐dimethoxycinnamonyl) anthranilic acid (3,4‐DAA), is a synthetic anthranilic acid derivative that has been used therapeutically in Japan for many years. In this study, to investigate the effects of 3,4‐DAA in allograft immunorejection model, liver orthotopic transplants were performed using inbred male Dark Agouti donors and Lewis rat recipients (allografts). The levels of indoleamine 2,3‐dioxygenases (IDO) enzymic activities in five groups, allografts (control), dimethyl sulphoxide‐treated group (vehicle control), 200 mg·kg–1·day–1 of 3,4‐DAA‐treated group and 200 mg·kg–1·day–1 of 3,4‐DAA + 5 mg·ml–1 of 1‐methyl‐D‐tryptophan (1‐MT)‐treated group were confirmed by determination of L‐kynurenine (L‐Kyn) concentrations. The serum alanine aminotransferase levels in 3,4‐DAA‐treated rats significantly decreased compared with those in mock and control group, whereas treatment of 1‐MT in allografts led to the opposite effect. Administration of 3,4‐DAA reduced histological severity of allograft immunorejection, decreased serum levels of cytokines tumour necrosis factor‐alpha (TNF‐α) and interferon‐gamma (IFN‐γ), and raised serum levels of interleukin‐10 (IL‐10), suggesting that 3,4‐DAA has both anti‐inflammatory and anti‐immunorejection properties through IDO in immune regulation and may therefore be useful in filling an unmet need, in the treatment of allograft immunorejection. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In recent years microorganisms have been engineered towards synthesizing interesting plant polyphenols such as flavonoids and stilbenes from glucose. Currently, the low endogenous supply of malonyl-CoA, indispensable for plant polyphenol synthesis, impedes high product titers. Usually, limited malonyl-CoA availability during plant polyphenol production is avoided by supplementing fatty acid synthesis-inhibiting antibiotics such as cerulenin, which are known to increase the intracellular malonyl-CoA pool as a side effect. Motivated by the goal of microbial polyphenol synthesis being independent of such expensive additives, we used rational metabolic engineering approaches to modulate regulation of fatty acid synthesis and flux into the tricarboxylic acid cycle (TCA cycle) in Corynebacterium glutamicum strains capable of flavonoid and stilbene synthesis. Initial experiments showed that sole overexpression of genes coding for the native malonyl-CoA-forming acetyl-CoA carboxylase is not sufficient for increasing polyphenol production in C. glutamicum. Hence, the intracellular acetyl-CoA availability was also increased by reducing the flux into the TCA cycle through reduction of citrate synthase activity. In defined cultivation medium, the constructed C. glutamicum strains accumulated 24 mg·L −1 (0.088 mM) naringenin or 112 mg·L −1 (0.49 mM) resveratrol from glucose without supplementation of phenylpropanoid precursor molecules or any inhibitors of fatty acid synthesis.  相似文献   

7.
《Biomass》1989,18(1):1-14
Papyrus (Cyperus papyrus) standing biomass and the primary productivity of undisturbed and previously harvested areas of papyrus was measured in Lake Naivasha swamp, Kenya. Papyrus culm density in undisturbed swamp was estimated to be 13·1±1·9 culms m−2 and aerial biomass was 3602 g m−2. In undisturbed swamp the aerial productivity was 14·1 g m−2 day−1 while the previously harvested swamp reached a peak of 21·0 g m−2 after 6 months. The annual aerial production rate of papyrus in Lake Naivasha was estimated to be 5150 g m−2 year−1. To sustain yields of regularly harvested papyrus swamps, the harvest intervals should exceed 1 year.  相似文献   

8.
《Acta Oecologica》1999,20(2):87-92
A study was conducted to determine soil chemistry in an uncut black spruce (Picea mariana) forest with and without the ericaceous understory shrub Kalmia angustifolia, as well as on a cut black spruce forest currently dominated by Kalmia. The organic (humus) and mineral (Ae, upper and lower B horizons) soils associated with Kalmia from uncut and cut forests, and non-Kalmia soils from uncut forest, were analyzed for selected soil properties. In general, mineral soils (B horizon) associated with Kalmia in uncut forest have lower values for organic matter (3.25%), organic nitrogen (0.66 mg·g−1), Fe3+ (95.4 μg·g−1) and Mn2+ (9 μg·g−1), and higher values for pH (4.12) and Ca2+ (27 μg·g−1) compared to non-Kalmia (organic matter, 3.43%; organic-N, 1.15 mg·g−1; Fe3+, 431 μg·g−1; Mn2+, 23.2 μg·g−1; pH, 3.14; Ca2+, 15.6 μg·g−1) and cut black spruce-Kalmia (organic matter, 3.74%; organic-N, 0.94 mg·g−1; Fe3+, 379 μg·g−1; Mn2+, 27 μg·g−1; pH, 2.87; Ca2+, 25.2 μg·g−1) forest. The high C:N ratio in Kalmia mineral soil from upper B (29.73) and lower B (identified as B+) (33.08) in uncut black spruce forest was recorded compared to non-Kalmia soils in B (18.17) and B+ (17.05) horizons in uncut black spruce forest. Phenolics leached out from Kalmia litter were lower in Kalmia associated soils than the non-Kalmia soils from the uncut forest, and Kalmia associated soils from the cut forest area. Results indicate that soils associated with Kalmia were nutrient poor particularly for nitrogen, phosphorus, iron and manganese, and provide some basis for the hypothesis that Kalmia has dominated microsites that were nutrient poor prior to Kalmia colonization.  相似文献   

9.
Improving the growth and pigment accumulation of microalgae by electrochemical approaches was considered a novel and promising method. In this research, we investigated the effect of conductive polymer poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) dispersible in water on growth and pigment accumulation of Haematococcus lacustris and Euglena gracilis. The results revealed that effect of PEDOT:PSS was strongly cell-dependent and each cell type has its own peculiar response. For H. lacustris, the cell density in the 50 mg·l−1 treatment group increased by 50·27%, and the astaxanthin yield in the 10 mg·l−1 treatment group increased by 37·08%. However, under the high concentrations of PEDOT:PSS treatment, cell growth was significantly inhibited, and meanwhile, the smaller and more active zoospores were observed, which reflected the changes in cell life cycle and growth mode. Cell growth of E. gracilis in all the PEDOT:PSS treatment groups were notably inhibited. Chlorophyll a content in E. gracilis decreased while chlorophyll b content increased in response to the PEDOT:PSS treatment. The results laid a foundation for further development of electrochemical methods to promote microalgae growth and explore the interactions between conductive polymers and microalgae cells.  相似文献   

10.
A Pseudomonas chlororaphis was found to degrade and utilize apolyester polyurethane as a sole carbon and energy source. Polyurethane utilization by P.chlororaphis followed simple Michaelis–Menten kinetics. The Ks and μmax values were 0.802 mg·ml−1 and 1.316 doublings·h−1, respectively. The enzymes from P. chlororaphis responsible for polyurethanedegradation were found to be extracellular. Analysis of the polyurethane degrading proteins, usingnon-denaturing polyacrylamide gel electrophoresis, revealed three active protein bands with Rf values of 0.25, 0.417 and 0.917. A polyurethane degrading enzyme was purifiedand displayed esterase activity. This enzyme was inhibited by phenylmethylsulfonyl fluoride andhad a molecular weight of 27,000 daltons.  相似文献   

11.
The hydrolytic activity of a recombinant β-glycosidase from Dictyoglomus turgidum that specifically hydrolyzed the xylose at the C-6 position and the glucose in protopanaxatriol (PPT)-type ginsenosides followed the order Rf > Rg1 > Re > R1 > Rh1 > R2. The production of aglycone protopanaxatriol (APPT) from ginsenoside Rf was optimal at pH 6.0, 80 °C, 1 mg ml?1 Rf, and 10.6 U ml?1 enzyme. Under these conditions, D. turgidum β-glycosidase converted ginsenoside R1 to APPT with a molar conversion yield of 75.6 % and a productivity of 15 mg l?1 h?1 after 24 h by the transformation pathway of R1 → R2 → Rh1 → APPT, whereas the complete conversion of ginsenosides Rf and Rg1 to APPT was achieved with a productivity of 1,515 mg l?1 h?1 after 6.6 h by the pathways of Rf → Rh1 → APPT and Rg1 → Rh1 → APPT, respectively. In addition, D. turgidum β-glycosidase produced 0.54 mg ml?1 APPT from 2.29 mg ml?1 PPT-type ginsenosides of Panax ginseng root extract after 24 h, with a molar conversion yield of 43.2 % and a productivity of 23 mg l?1 h?1, and 0.62 mg ml?1 APPT from 1.35 mg ml?1 PPT-type ginsenosides of Panax notoginseng root extract after 20 h, with a molar conversion yield of 81.2 % and a productivity of 31 mg l?1 h?1. This is the first report on the APPT production from ginseng root extract. Moreover, the concentrations, yields, and productivities of APPT achieved in the present study are the highest reported to date.  相似文献   

12.
Trans-4-hydroxy-l -proline (Hyp) is a useful chiral building block for production of many nutritional supplements and pharmaceuticals. However, it is still challenging for industrial production of Hyp due to heavy environmental pollution and low production efficiency. To establish a green and efficient process for Hyp production, the proline 4-hydroxylase (DsP4H) from Dactylosporangium sp. RH1 was overexpressed and functionally characterized in Escherichia coli BL21(DE3). The recombinant DsP4H with l -proline as a substrate exhibited Km, kcat and kcat/Km values up to 0.80 mM, 0.52 s−1 and 0.65 s−1·mM−1 respectively. Furthermore, DsP4H showed the highest activity at 35°C and pH 6.5 towards l -proline. The highest enzyme activity of 175.6 U mg−1 was achieved by optimizing culture parameters. Under the optimal transformation conditions in a 5-l fermenter, Hyp titre, conversion rate and productivity were up to 99.9 g l−1, 99.9% and 2.77 g l−1 h−1 respectively. This strategy described here provides an efficient method for production of Hyp and thus has a great potential in industrial application.  相似文献   

13.
Fang  Siyu  Li  Jie  Zheng  Wenfeng  Liu  Zhiyong  Feng  Hui  Zhang  Yun 《Protoplasma》2023,260(1):225-236

Isolated microspore culture has been implemented in breeding programs to produce doubled haploid (DH) lines and thus accelerates the breeding process. However, low microspore embryogenesis frequency in flowering Chinese cabbage remains a key obstacle to the practical application of this technique. This study aimed to establish an efficient microspore culture protocol for flowering Chinese cabbage that would be applied for heterosis breeding. Microspores of five genotypes, 19AY05, 19AY06, 19AY10, 19AY12, and 19AY15, were successfully induced to produce embryos in NLN-13 medium. Microspores of two genotypes, 19AY05 and 19AY15, were cultivated in NLN-13 medium supplemented with different concentrations (0, 0.01, 0.05, 0.1, or 0.2 mg·L−1) of compound sodium nitrophenol (sodium nitrophenol, 5-nitrophenol) to enhance microspore embryogenesis and plant regeneration without an intervening callus phase. The results showed that 0.05 ~ 0.1 mg· L−1 sodium nitrophenol and 0.01 ~ 0.2 mg· L−1 of 5-nitrophenol significantly promoted the induction of microspore embryogenesis of two genotypes, and the best concentrations required for different genotypes are different. Moreover, 0.1 mg· L−1 sodium nitrophenol can significantly increase the plant regeneration rate of the two genetypes. The 5-nitrophenol at 0.01 mg·L−1 significantly increased rate of embryos directly convert to plant in 19AY15. In addition, the average doubled haploid rates in the five genotypes were close to 63%. Horticultural traits of DH lines from 19AY05 were identified and all of them were self-incompatible lines. They showed a high uniformity and consistency that can be directly used for hybrid breeding. Furthermore, the hybrid combination was prepared with the selected DH lines and the Guangdong nucleus genic sterile line GMS019 to screen the excellent hybrid combination for the flowering Chinese cabbage breeding program. This method accelerates the application of microspore culture in hybrid breeding of flowering Chinese cabbage.

  相似文献   

14.
The enzyme catalysing the l-proline-dependent reduction of NAD+has been purified over 600-fold from wheat germ acetone powder extracts. l-Proline, 3,4 dehydro-dl-proline, thiazolidine-4-carboxylate were the only substrates utilized readily. The Km for l-proline was 1·0 mM and for NAD+ 0·8 mM. The enzyme was highly specific for NAD+ with NADP+ and NADPH acting as effective competitive inhibitors with a Ki of 1·8 and 0·4 μM, respectively. All ribonucleoside triphosphates tested were good non-competitive inhibitors, in particular UTP. The purified enzyme could reduce pyrroline-5-carboxylate, either chemically synthesized or generated in a linked assay system from ornithine by a highly-purified ornithine transaminase. In the latter case both NADH and NADPH were utilized equally well as the reductant. With chemically synthesized dl-pyrroline-5-carboxy-late as the substrate. NADPH was used at only 25% the rate of NADH, and NADPH strongly inhibited the oxidation of NADH.  相似文献   

15.
Excessive osteoclast recruitment and activation is the chief cause of periprosthetic osteolysis and subsequent aseptic loosening, so blocking osteolysis may be useful for protecting against osteoclastic bone resorption. We studied the effect of aspirin on titanium (Ti)-particle-induced osteolysis in vivo and in vitro using male C57BL/6J mice randomized to sham (sham surgery), Ti (Ti particles), low-dose aspirin (Ti/5 mg·kg−1·d−1 aspirin), and high-dose aspirin (Ti/30 mg·kg−1·d−1 aspirin). After 2 weeks, a three-dimensional reconstruction evaluation using micro-computed tomography and histomorphology assessment were performed on murine calvariae. Murine hematopoietic macrophages and RAW264.7 lineage cells were studied to investigate osteoclast formation and function. Aspirin attenuated Ti-particle-induced bone erosion and reduced osteoclasts. In vitro, aspirin suppressed osteoclast formation, osteoclastic-related gene expression, and osteoclastic bone erosion in a dose-dependent manner. Mechanically, aspirin reduced osteoclast formation by suppressing receptor activator of nuclear factor kappa-B ligand-induced activation of extracellular signal-related kinase, p-38 mitogen-activated protein kinase, and c-Jun N-terminal kinase. Thus, aspirin may be a promising option for preventing and curing osteoclastic bone destruction, including peri-implant osteolysis.  相似文献   

16.
Syngas fermentation is one of the bets for the future sustainable biobased economies due to its potential as an intermediate step in the conversion of waste carbon to ethanol fuel and other chemicals. Integrated with gasification and suitable downstream processing, it may constitute an efficient and competitive route for the valorization of various waste materials, especially if systems engineering principles are employed targeting process optimization. In this study, a dynamic multi-response model is presented for syngas fermentation with acetogenic bacteria in a continuous stirred-tank reactor, accounting for gas–liquid mass transfer, substrate (CO, H2) uptake, biomass growth and death, acetic acid reassimilation, and product selectivity. The unknown parameters were estimated from literature data using the maximum likelihood principle with a multi-response nonlinear modeling framework and metaheuristic optimization, and model adequacy was verified with statistical analysis via generation of confidence intervals as well as parameter significance tests. The model was then used to study the effects of process conditions (gas composition, dilution rate, gas flow rates, and cell recycle) as well as the sensitivity of kinetic parameters, and multiobjective genetic algorithm was used to maximize ethanol productivity and CO conversion. It was observed that these two objectives were clearly conflicting when CO-rich gas was used, but increasing the content of H2 favored higher productivities while maintaining 100% CO conversion. The maximum productivity predicted with full conversion was 2 g·L−1·hr−1 with a feed gas composition of 54% CO and 46% H2 and a dilution rate of 0.06 hr−1 with roughly 90% of cell recycle.  相似文献   

17.
To determine the most favorable conditions for the production of ethanol by Pachysolen tannophilus, this yeast was grown in batch cultures with various initial concentrations of two of the constituents of the culture medium: d-xylose (so), ranging from 1 g·l−1 to 200 g·l−1, and yeast extract (lo), ranging from 0 g·l−1 to 8 g·l−1. The most favorable conditions proved to be initial concentrations of So=25 g·l−1 and lo=4 g·l−1, which gave a maximum specific growth rate of 0.26 h−1, biomass productivity of 0.023 g·l−1·h−1, overall biomass yield of 0.094 g·g−1, specific xylose-uptake rate (qs) of 0.3 g·g−1·h−1 (for t=50 h), specific ethanol-production rate (qE) of 0.065 g·g−1·h−1 and overall ethanol yield of 0.34 g·g−1; qs values decreased after the exponential growth phase while qE remained practically constant.  相似文献   

18.
An aryl acylamidase (aryl-acylamine amidohydrolase, E.C. 3.5. 1.a) which hydrolyses the herbicide propanil (3′,4′-dichloropropionanilide), was isolated from dandelion roots and partially purified and characterized. Specificity tests on the enzyme revealed that it could hydrolyse various chlorine ring-substituted propionanilides and 3,4-dichloroanilide alkyl compounds. The partially purified enzyme was inhibited by several sulfhydryl reagents and metal ions. The pH optimum was broad, between 7·4 and 7·8. The apparent activation energy, determined from an Arrhenius plot, was 9·0 kcal/mol (37 700 J/mol) for the hydrolysis of 3′,4′-dichloropropionanilide. The apparent Km was 1·7 × 10−4 M with propanil as substrate.  相似文献   

19.
《Biomass》1990,21(3):189-206
Vertical and near-horizontal (15° angle) packed-bed columns were compared for continuous ethanol fermentation using an alcohol- and glucose-tolerant Saccharomyces cerevisiae strain immobilized on to channeled alumina beads (5·0 × 109 cells g−1 beads). Spaces between beads (1·0–6·5 mm) and angle (15°) of near-horizontal reactor columns (with six ports in each) efficiently removed CO2 and increased ethanol productivity. Malt-glucose-yeast-extract broth containing 16·7% glucose at 35°C fed at a dilution rate of 3· h−1 to thw two horizontal columns (in series) yielded maximum ethanol productivity of 40·0 g liter−1 h−1. Feedstock flow rate and other factors (temperature, pH, nutrients, and glucose levels) affected productivities. The immobilized-cell system showed operational stability for >3 months without plugging, and could be stored for at least one year with no loss of bioreactor performance. Scanning electron micrographs of the beads revealed large numbers of yeast-cells attached on to internal and external surfaces of beads.  相似文献   

20.
为探讨不同浓度氧化石墨烯(GO)对多年生黑麦草生长、生理及光合特征的影响,该文采用盆栽试验,在土壤中添加0、10、20、30、40、50 mg·g-1 GO进行多年生黑麦草培养,并测定植物生长指标、光合色素含量、保护酶活性、丙二醛(MDA)含量、叶片质膜透性、可溶性蛋白含量和光合参数。结果表明:(1)10、20 mg·g-1 GO处理对多年生黑麦草生长无显著影响;30~50 mg·g-1 GO处理对多年生黑麦草生长具有抑制作用,在50 mg·g-1 GO浓度下多年生黑麦草株高和生物量均最小,较对照分别降低了16.8%和27.1%。(2)当GO浓度达到30 mg·g-1时,总叶绿素和类胡萝卜素的含量显著降低,在50 mg·g-1 GO处理时达到最低。(3)高浓度的GO处理(40、50 mg·g-1)虽降低了多年生黑麦草的叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号