首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial overharvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbour high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.  相似文献   

2.
The estimation and maintenance of connectivity among local populations is an important conservation goal for many species at risk. We used Bayesian statistics and coalescent theory to estimate short- and long-term directional gene flow among subpopulations for two reptiles that occur in Canada as peripheral populations that are geographically disjunct from the core of their respective species’ ranges: the black ratsnake and the Blanding’s turtle. Estimates of directional gene flow were used to examine population connectivity and potential genetic source-sink dynamics. For both species, our estimates of directional short- and long-term gene flow were consistently lower than estimates inferred previously from F ST measures. Short- and long-term gene flow estimates were discordant in both species, suggesting that population dynamics have varied temporally in both species. These estimates of directional gene flow were used to identify specific subpopulations in both species that may be of high conservation value because they are net exporters of individuals to other subpopulations. Overall, our results show that the use of more sophisticated methods to evaluate population genetic data can provide valuable information for the conservation of species at risk, including bidirectional estimates of subpopulation connectivity that rely on fewer assumptions than more traditional analyses. Such information can be used by conservation practitioners to better understand the geographic scope required to maintain a functional metapopulation, determine which habitat corridors within a working landscape may be most important to maintain connectivity among subpopulations, and to prioritize subpopulations with respect to their potential to act as genetic sources within the metapopulation.  相似文献   

3.
In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep‐sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep‐sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A total of 42 loci were sequenced from each individual using high‐throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.  相似文献   

4.
Genetic diversity (θ), effective population size (N(e)), and contemporary levels of gene flow are important parameters to estimate for species of conservation concern, such as the globally endangered scalloped hammerhead shark, Sphyrna lewini. Therefore, we have reconstructed the demographic history of S. lewini across its Eastern Pacific (EP) range by applying classical and coalescent population genetic methods to a combination of 15 microsatellite loci and mtDNA control region sequences. In addition to significant population genetic structure and isolation-by-distance among seven coastal sites between central Mexico and Ecuador, the analyses revealed that all populations have experienced a bottleneck and that all current values of θ are at least an order of magnitude smaller than ancestral θ, indicating large decreases in N(e) (θ = 4N(e)μ), where μ is the mutation rate. Application of the isolation-with-migration (IM) model showed modest but significant genetic connectivity between most sampled sites (point estimates of Nm = 0.1-16.7), with divergence times (t) among all populations significantly greater than zero. Using a conservative (i.e., slow) fossil-based taxon-specific phylogenetic calibration for mtDNA mutation rates, posterior probability distributions (PPDs) for the onset of the decline in N(e) predate modern fishing in this region. The cause of decline over the last several thousand years is unknown but is highly atypical as a post-glacial demographic history. Regardless of the cause, our data and analyses suggest that S. lewini was far more abundant throughout the EP in the past than at present.  相似文献   

5.
Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent‐based inferences about demographic processes to reconstruct the population histories of two co‐distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation.  相似文献   

6.

Background and Aims

Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression.

Methods

Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively.

Key Results

The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation.

Conclusions

Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration.  相似文献   

7.
Northern Goshawks occupying the Alexander Archipelago, Alaska, and coastal British Columbia nest primarily in old-growth and mature forest, which results in spatial heterogeneity in the distribution of individuals across the landscape. We used microsatellite and mitochondrial data to infer genetic structure, gene flow, and fluctuations in population demography through evolutionary time. Patterns in the genetic signatures were used to assess predictions associated with the three population models: panmixia, metapopulation, and isolated populations. Population genetic structure was observed along with asymmetry in gene flow estimates that changed directionality at different temporal scales, consistent with metapopulation model predictions. Therefore, Northern Goshawk assemblages located in the Alexander Archipelago and coastal British Columbia interact through a metapopulation framework, though they may not fit the classic model of a metapopulation. Long-term population sources (coastal mainland British Columbia) and sinks (Revillagigedo and Vancouver islands) were identified. However, there was no trend through evolutionary time in the directionality of dispersal among the remaining assemblages, suggestive of a rescue–effect dynamic. Admiralty, Douglas, and Chichagof island complex appears to be an evolutionarily recent source population in the Alexander Archipelago. In addition, Kupreanof island complex and Kispiox Forest District populations have high dispersal rates to populations in close geographic proximity and potentially serve as local source populations. Metapopulation dynamics occurring in the Alexander Archipelago and coastal British Columbia by Northern Goshawks highlight the importance of both occupied and unoccupied habitats to long-term population persistence of goshawks in this region.  相似文献   

8.
Population structuring in species inhabiting marine environments such as the Northeast Atlantic Ocean (NEA) and Mediterranean Sea (MS) has usually been explained based on past and present physical barriers to gene flow and isolation by distance (IBD). Here, we examined the relative importance of these factors on population structuring of the common cuttlefish Sepia officinalis by using methods of phylogenetic inference and hypothesis testing coupled with coalescent and classical population genetic parameter estimation. Individuals from 10 Atlantic and 15 Mediterranean sites were sequenced for 659 bp of the mitochondrial COI gene (259 sequences). IBD seems to be the main factor driving present and past genetic structuring of Sepia populations across the NEA-MS, both at large and small geographical scales. Such an evolutionary process agrees well with some of the biological features characterizing this cuttlefish species (short migrations, nektobenthic habit, benthic eggs hatching directly to benthic juveniles). Despite the many barriers to migration/gene flow suggested in the NEA-MS region, genetic population fragmentation due to past isolation of water masses (Pleistocene; 0.56 million years ago) and/or present-day oceanographic currents was only detected between the Aegean-Ionian and western Mediterranean Seas. Restricted gene flow associated with the Almería-Oran hydrographic front was also suggested between southern and eastern Spanish populations. Distinct population boundaries could not be clearly determined, except for the Aegean-Ionian stock. Two Atlantic and five Mediterranean samples showed evidence of current decline in genetic diversity, which may indicate over-exploitation of Sepia in both marine regions.  相似文献   

9.
The evolutionary viability of an endangered species depends upon gene flow among subpopulations and the degree of habitat patch connectivity. Contrasting population connectivity over ecological and evolutionary timescales may provide novel insight into what maintains genetic diversity within threatened species. We employed this integrative approach to evaluating dispersal in the critically endangered Coahuilan box turtle (Terrapene coahuila) that inhabits isolated wetlands in the desert‐spring ecosystem of Cuatro Ciénegas, Mexico. Recent wetland habitat loss has altered the spatial distribution and connectivity of habitat patches; and we therefore predicted that T. coahuila would exhibit limited movement relative to estimates of historic gene flow. To evaluate contemporary dispersal patterns, we employed mark–recapture techniques at both local (wetland complex) and regional (intercomplex) spatial scales. Gene flow estimates were obtained by surveying genetic variation at nine microsatellite loci in seven subpopulations located across the species’ geographical range. The mark–recapture results at the local spatial scale reveal frequent movement among wetlands that was unaffected by interwetland distance. At the regional spatial scale, dispersal events were relatively less frequent between wetland complexes. The complementary analysis of population genetic substructure indicates strong historic gene flow (global FST = 0.01). However, a relationship of genetic isolation by distance across the geographical range suggests that dispersal limitation exists at the regional scale. Our approach of contrasting direct and indirect estimates of dispersal at multiple spatial scales in T. coahuila conveys a sustainable evolutionary trajectory of the species pending preservation of threatened wetland habitats and a range‐wide network of corridors.  相似文献   

10.
The evolutionary history of a population involves changes in size, movements and selection pressures through time. Reconstruction of population history based on modern genetic data tends to be averaged over time or to be biased by generally reflecting only recent or extreme events, leaving many population historic processes undetected. Temporal genetic data present opportunities to reveal more complex population histories and provide important insights into what processes have influenced modern genetic diversity. Here we provide a synopsis of methods available for the analysis of ancient genetic data. We review 29 ancient DNA studies, summarizing the analytical methods and general conclusions for each study. Using the serial coalescent and a model-testing approach, we then re-analyse data from two species represented by these data sets in a common interpretive framework. Our analyses show that phylochronologic data can reveal more about population history than modern data alone, thus revealing 'cryptic' population processes, and enable us to determine whether simple or complex models best explain the data. Our re-analyses point to the need for novel methods that consider gene flow, multiple populations and population size in reconstruction of population history. We conclude that population genetic samples over large temporal and geographical scales, when analysed using more complex models and the serial coalescent, are critical to understand past population dynamics and provide important tools for reconstructing the evolutionary process.  相似文献   

11.
Population Graphs: the graph theoretic shape of genetic structure   总被引:1,自引:0,他引:1  
Dyer RJ  Nason JD 《Molecular ecology》2004,13(7):1713-1727
Patterns of intraspecific genetic variation result from interactions among both historical and contemporary evolutionary processes. Traditionally, population geneticists have used methods such as F-statistics, pairwise isolation by distance models, spatial autocorrelation and coalescent models to analyse this variation and to gain insight about causal evolutionary processes. Here we introduce a novel approach (Population Graphs) that focuses on the analysis of marker-based population genetic data within a graph theoretic framework. This method can be used to estimate traditional population genetic summary statistics, but its primary focus is on characterizing the complex topology resulting from historical and contemporary genetic interactions among populations. We introduce the application of Population Graphs by examining the range-wide population genetic structure of a Sonoran Desert cactus (Lophocereus schottii). With this data set, we evaluate hypotheses regarding historical vicariance, isolation by distance, population-level assignment and the importance of specific populations to species-wide genetic connectivity. We close by discussing the applicability of Population Graphs for addressing a wide range of population genetic and phylogeographical problems.  相似文献   

12.
To test the hypothesis that both physical and ecological barriers to gene flow drive population differentiation in tropical seabirds, we surveyed mitochondrial control region variation in 242 brown boobies (Sula leucogaster), which prefer inshore habitat, and 271 red-footed boobies (S. sula), which prefer pelagic habitat. To determine the relative influence of isolation and gene flow on population structure, we used both traditional methods and a recently developed statistical method based on coalescent theory and Bayesian inference (Isolation with Migration). We found that global population genetic structure was high in both species, and that female-mediated gene flow among ocean basins apparently has been restricted by major physical barriers including the Isthmus of Panama, and the periodic emergence of the Sunda and Sahul Shelves in Southeast Asia. In contrast, the evolutionary history of populations within ocean basins differed markedly between the two species. In brown boobies, we found high levels of population genetic differentiation and limited gene flow among colonies, even at spatial scales as small as 500 km. Although red-footed booby colonies were also genetically differentiated within ocean basins, coalescent analyses indicated that populations have either diverged in the face of ongoing gene flow, or diverged without gene flow but recently made secondary contact. Regardless, gene flow among red-footed booby populations was higher than among brown booby populations. We suggest that these contrasting patterns of gene flow within ocean basins may be explained by the different habitat preferences of brown and red-footed boobies.  相似文献   

13.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.  相似文献   

14.
The application of spatially explicit models of population dynamics to fisheries management and the design marine reserve network systems has been limited due to a lack of empirical estimates of larval dispersal. Here we compared assignment tests and parentage analysis for examining larval retention and connectivity under two different gene flow scenarios using panda clownfish ( Amphiprion polymnus ) in Papua New Guinea. A metapopulation of panda clownfish in Bootless Bay with little or no genetic differentiation among five spatially discrete locations separated by 2–6 km provided the high gene flow scenario. The low gene flow scenario compared the Bootless Bay metapopulation with a genetically distinct population ( F ST = 0.1) located at Schumann Island, New Britain, 1500 km to the northeast. We used assignment tests and parentage analysis based on microsatellite DNA data to identify natal origins of 177 juveniles in Bootless Bay and 73 juveniles at Schumann Island. At low rates of gene flow, assignment tests correctly classified juveniles to their source population. On the other hand, parentage analysis led to an overestimate of self-recruitment within the two populations due to the significant deviation from panmixia when both populations were pooled. At high gene flow (within Bootless Bay), assignment tests underestimated self-recruitment and connectivity among subpopulations, and grossly overestimated self-recruitment within the overall metapopulation. However, the assignment tests did identify immigrants from distant (genetically distinct) populations. Parentage analysis clearly provided the most accurate estimates of connectivity in situations of high gene flow.  相似文献   

15.
Across western North America, Mimulus guttatus exists as many local populations adapted to site‐specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole‐genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree‐based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.  相似文献   

16.
Inferring aspects of the population histories of species using coalescent analyses of non-coding nuclear DNA has grown in popularity. These inferences, such as divergence, gene flow, and changes in population size, assume that genetic data reflect simple population histories and neutral evolutionary processes. However, violating model assumptions can result in a poor fit between empirical data and the models. We sampled 22 nuclear intron sequences from at least 19 different chromosomes (a genomic transect) to test for deviations from selective neutrality in the gadwall (Anas strepera), a Holarctic duck. Nucleotide diversity among these loci varied by nearly two orders of magnitude (from 0.0004 to 0.029), and this heterogeneity could not be explained by differences in substitution rates alone. Using two different coalescent methods to infer models of population history and then simulating neutral genetic diversity under these models, we found that the observed among-locus heterogeneity in nucleotide diversity was significantly higher than expected for these simple models. Defining more complex models of population history demonstrated that a pre-divergence bottleneck was also unlikely to explain this heterogeneity. However, both selection and interspecific hybridization could account for the heterogeneity observed among loci. Regardless of the cause of the deviation, our results illustrate that violating key assumptions of coalescent models can mislead inferences of population history.  相似文献   

17.
A detailed understanding of the genetic structure of populations and an accurate interpretation of processes driving contemporary patterns of gene flow are fundamental to successful spatial conservation management. The field of seascape genetics seeks to incorporate environmental variables and processes into analyses of population genetic data to improve our understanding of forces driving genetic divergence in the marine environment. Information about barriers to gene flow (such as ocean currents) is used to define a resistance surface to predict the spatial genetic structure of populations and explain deviations from the widely applied isolation-by-distance model. The majority of seascape approaches to date have been applied to linear coastal systems or at large spatial scales (more than 250 km), with very few applied to complex systems at regional spatial scales (less than 100 km). Here, we apply a seascape genetics approach to a peripheral population of the broadcast-spawning coral Acropora spicifera across the Houtman Abrolhos Islands, a high-latitude complex coral reef system off the central coast of Western Australia. We coupled population genetic data from a panel of microsatellite DNA markers with a biophysical dispersal model to test whether oceanographic processes could explain patterns of genetic divergence. We identified significant variation in allele frequencies over distances of less than 10 km, with significant differentiation occurring between adjacent sites but not between the most geographically distant ones. Recruitment probabilities between sites based on simulated larval dispersal were projected into a measure of resistance to connectivity that was significantly correlated with patterns of genetic divergence, demonstrating that patterns of spatial genetic structure are a function of restrictions to gene flow imposed by oceanographic currents. This study advances our understanding of the role of larval dispersal on the fine-scale genetic structure of coral populations across a complex island system and applies a methodological framework that can be tailored to suit a variety of marine organisms with a range of life-history characteristics.  相似文献   

18.
Knowledge of population structure, connectivity, and effective population size remains limited for many marine apex predators, including the bull shark Carcharhinus leucas. This large‐bodied coastal shark is distributed worldwide in warm temperate and tropical waters, and uses estuaries and rivers as nurseries. As an apex predator, the bull shark likely plays a vital ecological role within marine food webs, but is at risk due to inshore habitat degradation and various fishing pressures. We investigated the bull shark's global population structure and demographic history by analyzing the genetic diversity of 370 individuals from 11 different locations using 25 microsatellite loci and three mitochondrial genes (CR, nd4, and cytb). Both types of markers revealed clustering between sharks from the Western Atlantic and those from the Western Pacific and the Western Indian Ocean, with no contemporary gene flow. Microsatellite data suggested low differentiation between the Western Indian Ocean and the Western Pacific, but substantial differentiation was found using mitochondrial DNA. Integrating information from both types of markers and using Bayesian computation with a random forest procedure (ABC‐RF), this discordance was found to be due to a complete lack of contemporary gene flow. High genetic connectivity was found both within the Western Indian Ocean and within the Western Pacific. In conclusion, these results suggest important structuring of bull shark populations globally with important gene flow occurring along coastlines, highlighting the need for management and conservation plans on regional scales rather than oceanic basin scale.  相似文献   

19.
Even though the Indo-Malay Archipelago hosts the world's greatest diversity of marine species, studies on the genetic population structure and gene flow of marine organisms within this area are rather rare. Consequently, not much is known about connectivity of marine populations in the Indo-Malay Archipelago, despite the fact that such information is important to understand evolutionary and ecological processes in the centre of marine biodiversity. This study aims to investigate the genetic population structure of the boring giant clam, Tridacna crocea . The analysis is based on a 456-bp fragment of the cytochrome oxidase I gene from 300 individuals collected from 15 localities across the Indo-Malay Archipelago. Tridacna crocea shows a very strong genetic population structure and isolation by distance, indicating restricted gene flow between almost all sample sites. The observed ΦST-value of 0.28 is very high compared to other studies on giant clams. According to the pronounced genetic differences, the sample sites can be divided into four groups from West to East: (i) Eastern Indian Ocean, (ii) Java Sea, (iii) South China Sea, Indonesian throughflow, as well as seas in the East of Sulawesi, and (iv) Western Pacific. This complex genetic population structure and pattern of connectivity, characterised by restricted gene flow between some sites and panmixing between others can be attributed to the geological history and prevailing current regimes in the Indo-Malay Archipelago.  相似文献   

20.
Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration–drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T‐Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号