首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Four new alleles, bn116, bn117, bn118, and bn119, on LG I were isolated in C. elegans with defects in germline stem cell proliferation. Using genetic mapping and snip-SNP mapping, bn116, bn117, bn118, and bn119 were located 5.0 cM, 1.3 cM, 2.3 cM, and 5.0 cM, respectively, to the right of dpy-5 on LG I. Further, bn116 and bn119 were grouped into the same complementation group by a complementation test. They are loss-of-function recessive alleles that produce homozygous sterile worms whose germ cells do not proliferate during larval development. However, the worms contained normal somatic gonadal structures including distal tip cells and gonadal sheath cells, suggesting that the defect in germline proliferation was not caused by the absence of somatic signaling. Although DAF-16 was localized to the nucleus in all four mutants, the life span was extended only in the three mutants except bn116. These results suggest that the defect in germline stem cell proliferation, the presence of normal somatic gonadal tissues, and DAF-16 nuclear translocation were sufficient for extending the lifespan of the bn117, bn118, and bn119 mutants, but not the bn116 mutant. Intriguingly, bn116 and bn119 were identified as two different mutations on the same gene, pab-1, which encodes a poly(A)-binding protein. Therefore, although the bn116 and bn119 mutations cause similar defects in germ cell proliferation, their effects on life span are different.  相似文献   

3.
E. M. Maine  J. Kimble 《Genetics》1993,135(4):1011-1022
The glp-1 gene is essential for two cell interactions that control cell fate in Caenorhabditis elegans: induction of anterior pharynx in the embryo and induction of mitotic proliferation in the germ line. To identify other genes involved in these cell interactions, we have isolated suppressors of two temperature sensitive alleles of glp-1. Each of 14 recessive suppressors rescues both embryonic and germline glp-1(ts) defects. These suppressors are extragenic and define a set of six genes designated sog, for suppressor of glp-1. Suppression of glp-1 is the only obvious phenotype associated with sog mutations. Mutations in different sog genes show allele-specific intergenic noncomplementation, suggesting that the sog gene products may interact. In addition, we have analyzed a semidominant mutation that suppresses only the glp-1 germline phenotype and has a conditional feminized phenotype of its own. None of the suppressors rescues a glp-1 null mutation and therefore they do not bypass a requirement for glp-1. Distal tip cell function remains necessary for germline proliferation in suppressed animals. These suppressor mutations identify genes that may encode other components of the glp-1 mediated cell-signaling pathway or regulate glp-1 expression.  相似文献   

4.
J Austin  J Kimble 《Cell》1987,51(4):589-599
In the wild-type C. elegans germ line there are both mitotic and meiotic germ cells. Mutations in glp-1 cause germ cells that would normally divide mitotically to enter meiosis. This mutant phenotype mimics the effect of killing the distal tip cell, a somatic cell that interacts with the germ line to regulate the mitotic/meiotic decision. In addition, wild-type glp-1 product is required maternally for embryogenesis. Temperature-shift experiments indicate that the temporal requirement for glp-1 activity in the germ line is the same as that for distal tip cell regulation. Mosaic analyses suggest that glp-1 is produced in the germ line. We propose that glp-1 acts as part of the receiving mechanism in the interaction between the distal tip cell and germ line.  相似文献   

5.
L. C. Kadyk  E. J. Lambie    J. Kimble 《Genetics》1997,145(1):111-121
The germ line is the only tissue in Caenorhabditis elegans in which a stem cell population continues to divide mitotically throughout life; hence the cell cycles of the germ line and the soma are regulated differently. Here we report the genetic and phenotypic characterization of the glp-3 gene. In animals homozygous for each of five recessive loss-of-function alleles, germ cells in both hermaphrodites and males fail to progress through mitosis and meiosis, but somatic cells appear to divide normally. Germ cells in animals grown at 15° appear by DAPI staining to be uniformly arrested at the G2/M transition with <20 germ cells per gonad on average, suggesting a checkpoint-mediated arrest. In contrast, germ cells in mutant animals grown at 25° frequently proliferate slowly during adulthood, eventually forming small germ lines with several hundred germ cells. Nevertheless, cells in these small germ lines never undergo meiosis. Double mutant analysis with mutations in other genes affecting germ cell proliferation supports the idea that glp-3 may encode a gene product that is required for the mitotic and meiotic cell cycles in the C. elegans germ line.  相似文献   

6.
By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the germ line during postembryonic development, and that cdc-25.1 activity is probably not required in somatic lineages during larval development. We analyzed cell division of germ cells and somatic tissues in bn115 homozygotes with germline-specific anti-PGL-1 immunofluorescence and GFP transgenes that express in intestinal cells, in distal tip cells, and in gonadal sheath cells, respectively. We also analyzed the expression pattern of cdc-25.1 with conventional and quantitative RT-PCR. In the presence of three other family members of cdc-25 in C. elegans defects are observed only in the germ line but not in the somatic tissues in cdc-25.1 single mutants, and cdc-25.1 is expressed predominantly, if not exclusively, in the germ line during postembryonic stages. Our findings indicate that the function of cdc-25.1 is unique in the germ line but likely redundant with other members in the soma.  相似文献   

7.
C Garvin  R Holdeman  S Strome 《Genetics》1998,148(1):167-185
Mutations in mes-2, mes-3, mes-4, and mes-6 result in maternal-effect sterility: hermaphrodite offspring of mes/mes mothers are sterile because of underproliferation and death of the germ cells, as well as an absence of gametes. Mutant germ cells do not undergo programmed cell death, but instead undergo a necrotic-type death, and their general poor health apparently prevents surviving germ cells from forming gametes. Male offspring of mes mothers display a significantly less severe germline phenotype than their hermaphrodite siblings, and males are often fertile. This differential response of hermaphrodite and male offspring to the absence of mes+ product is a result of their different X chromosome compositions; regardless of their sexual phenotype, XX worms display a more severe germline phenotype than XO worms, and XXX worms display the most severe phenotype. The sensitivity of the mutant phenotype to chromosome dosage, along with the similarity of two MES proteins to chromatin-associated regulators of gene expression in Drosophila, suggest that the essential role of the mes genes is in control of gene expression in the germline. An additional, nonessential role of the mes genes in the soma is suggested by the surprising finding that mutations in the mes genes, like mutations in dosage compensation genes, feminize animals whose male sexual identity is somewhat ambiguous. We hypothesize that the mes genes encode maternally supplied regulators of chromatin structure and gene expression in the germline and perhaps in somatic cells of the early embryo, and that at least some of their targets are on the X chromosomes.  相似文献   

8.
We investigated the control of proliferation and differentiation in the larval Caenorhabditis elegans hermaphrodite germ line through analysis of glp-1 and lag-2 mutants, cell ablations, and ultrastructural data. After the first several rounds of germ cell division, GLP-1, a receptor of the LIN-12/Notch family, governs germline proliferation. We analyzed the proximal proliferation (Pro) phenotype in glp-1(ar202) and found that initial meiosis was delayed and spatially mispositioned. This is due, at least in part, to a heightened response of the mutant GLP-1 receptor to multiple sources of the somatic ligand LAG-2, including the proximal somatic gonad. We investigated whether proximal LAG-2 affects germline proliferation in the wild type. Our results indicate that (1) LAG-2 is necessary for GLP-1-mediated germline proliferation and prevention of early meiosis, and (2) several distinct anatomical sources of LAG-2 in the larval somatic gonad functionally overlap to promote proliferation and prevent early meiosis. Ultrastructural studies suggest that mitosis is not restricted to areas of direct DTC-germ line contact and that the germ line shares a common cytoplasm in larval stages. We propose that downregulation of the GLP-1 signaling pathway in the proximal germ line at the time of meiotic onset is under tight temporal and spatial control.  相似文献   

9.
10.
11.
Reproduction in C. elegans relies on continuously proliferating germ cells which, during germline development, exit mitosis, undergo meiosis and differentiate into gametes. Supplementing the diet of C. elegans with dihommogamma-linolenic acid (20:3n-6, DGLA), a long chain omega-6 polyunsaturated fatty acid, results in sterile worms that lack germ cells. The effect is remarkably specific for DGLA, as eicosapentaenoic acid (20:5n-3, EPA) and other long-chain polyunsaturated fatty acids with similar physical properties have little or no effect on fertility. Germ cells undergoing mitosis during larval stages are especially sensitive to DGLA, but exposure to DGLA during adulthood also reduces germ cells and brood size, in part by inducing inappropriate apoptosis of meiotic germ cells. Mutant strains with defects in fatty acid desaturation and elongation display altered susceptibility to DGLA, indicating that the sterility effect of the dietary lipid depends on the amount of DGLA present in membranes as well as on the capacity to convert DGLA to other fatty acids. We propose that DGLA produces a signal that interacts with one or more pathways regulating germ cell survival. Our DGLA findings are the first report of a role for a specific fatty acid affecting the development and maintenance of germ cells in C. elegans.  相似文献   

12.
In C. elegans, the Notch receptor GLP-1 is localized within the germline and early embryo by translational control of glp-1 mRNA. RNA elements in the glp-1 3'untranslated region (3' UTR) are necessary for repression of glp-1 translation in germ cells, and for localization of translation to anterior cells of the early embryo. The direct regulators of glp-1 mRNA are not known. Here, we show that a 34 nucleotide region of the glp-1 3' UTR contains two regulatory elements, an element that represses translation in germ cells and posterior cells of the early embryo, and an element that inhibits repressor activity to promote translation in the embryo. Furthermore, we show that the STAR/KH domain protein GLD-1 binds directly and specifically to the repressor element. Depletion of GLD-1 activity by RNA interference causes loss of endogenous glp-1 mRNA repression in early meiotic germ cells, and in posterior cells of the early embryo. Therefore, GLD-1 is a direct repressor of glp-1 translation at two developmental stages. These results suggest a new function for GLD-1 in regulating early embryonic asymmetry. Furthermore, these observations indicate that precise control of GLD-1 activity by other regulatory factors is important to localize this Notch receptor, and contributes to the spatial organization of Notch signaling.  相似文献   

13.
To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation.  相似文献   

14.
15.
From the existence of two types of cells for reproduction-the female and male germ cells (GCs)-and by recombination of the genome, evolution proceeded dramatically. Unicellular and multicellular plants frequently are characterized by a sequence of haploid and diploid phases, or generations, with gametes and spores as reproductive cells. Isogamy, anisogamy, and oogamy can be distinguished depending on the GCs that correspond, differ in size, or impose as egg cell and sperm cell. In protozoans, too, species are found in which GCs differ clearly from each other. In the female lineage of angiosperms, a "Keimbahn chain" consisting of five successive germ line cells can be observed. Oogenesis and spermatogenesis are complete in coelenterates and similar in mammals. However, the controlling mechanisms are by far more complex in the latter. This means that the balance of hormonal and vegetative nervous influences (stimulation, inhibition) on gametogenesis is not primarily orientated on the germ line cells themselves, but mostly on the structural and functional situation of the gonads and the individual carriers. This becomes particularly evident in insects, where gametogenesis, on the one side, depends on the development of the rest of the organism but on the other side represents an independent developmental process. The point at which germ line cells and somatic cells separate correlates more or less with the degree of phylogenetic development. In worms, insects, and up to the anurans, a part of the cytoplasm, the so-called germ plasma, is separated for the development of GCs during oogenesis (preformistic development). However, in urodeles, reptiles, birds, and mammals, GCs and somatic cells cannot be distinguished before gastrulation (epigenetic development). In various species (e.g., in some oligochaetes and snails), there exist "double spermatogenic lines." In mammals (probably in other vertebrates and perhaps in various phyla of animals, too), the female Keimbahn is provided with only one proliferation system. The male gametogenesis is equipped with two systems: the first corresponds to the female germ line, the second is responsible for the immense number of gametes produced in the mature testes. In mammals the message to become male lies on the Y-chromosome (on its short arm in man and mouse) and was identified as the gene SRY in human and Sry in mouse. The fertility genes that are responsible for an uninterrupted spermatogenesis, up to fertilizing spermatozoa, are sitting on the long arm of the human Y-chromosome. J. Exp. Zool. (Mol. Dev. Evol.) 285:197-214, 1999.  相似文献   

16.
17.
Dividing stem cells can give rise to two types of daughter cells; self-renewing cells that have virtually the same properties as the parent cell, and differentiating cells that will eventually form part of a tissue. The Caenorhabditis elegans germ line serves as a model to study how the balance between these two types of daughter cells is maintained. A mutation in teg-4 causes over-proliferation of the stem cells, thereby disrupting the balance between proliferation and differentiation. We have cloned teg-4 and found it to encode a protein homologous to the highly conserved splicing factor subunit 3 of SF3b. Our allele of teg-4 partially reduces TEG-4 function. In an effort to determine how teg-4 functions in controlling stem cell proliferation, we have performed genetic epistasis analysis with known factors controlling stem cell proliferation. We found that teg-4 is synthetic tumorous with genes in both major redundant genetic pathways that function downstream of GLP-1/Notch signaling to control the balance between proliferation and differentiation. Therefore, teg-4 is unlikely to function specifically in either of these two genetic pathways. Further, the synthetic tumorous phenotype seen with one of the genes from these pathways is epistatic to glp-1, indicating that teg-4 functions downstream of glp-1, likely as a positive regulator of meiotic entry. We propose that a reduction in teg-4 activity reduces the splicing efficiency of targets involved in controlling the balance between proliferation and differentiation. This results in a shift in the balance towards proliferation, eventually forming a germline tumor.  相似文献   

18.
RNA interference with one of the eight Caenorhabditis elegans linker histone genes triggers desilencing of a repetitive transgene and developmental defects in the hermaphrodite germ line. These characteristics are similar to the phenotype of the C. elegans Polycomb group genes mes-2, mes-3, mes-4, and mes-6 (M. A. Jedrusik and E. Schulze, Development 128:1069-1080, 2001; I. Korf, Y. Fan, and S. Strome, Development 125:2469-2478, 1998). These Polycomb group proteins contribute to germ line-specific chromatin modifications. Using a his-24 deletion mutant and an isoform-specific antibody, we characterized the role of his-24 in C. elegans germ line development. We describe an unexpected cytoplasmic retention of HIS-24 in peculiar granular structures. This phenomenon is confined to the developing germ lines of both sexes. It is strictly dependent on the activities of the chromatin-modifying genes mes-2, mes-3, mes-4, and mes-6, as well as on the C. elegans sirtuin gene sir-2.1. A temperature shift experiment with a mes-3(ts) mutant revealed that mes gene activity is required in a time window ranging from L3 to the early L4 stage before the onset of meiosis. We find that the his-24(ok1024) mutant germ line is characterized by an increased level of the activating H3K4 methylation mark concomitant with a decrease of the repressive H3K9 methylation. In the germ line of his-24(ok1024) mes-3(bn35) double mutant animals, the repressive H3K27 methylation is more reduced than in the respective mes single mutant. These observations distinguish his-24 as an unusual element in the developmental regulation of germ line chromatin structure in C. elegans.  相似文献   

19.
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.  相似文献   

20.
In the present study, we characterized a sterile cpi-2a(ok1256) deletion mutant in Caenorhabditis elegans and showed that CPI-2a has an essential regulatory role during oogenesis and fertilization. We have also shown that the CPI2a inhibitor and both Ce-CPL-1 and Ce-CPZ-1 enzymes are present in the myoepithelial sheath surrounding germ cells, oocytes, and embryos as well as in the yolk granules within normal oocytes. Staining of mutant worms with anti-yolk protein antibodies has indicted that the proteins are not present in the mature oocytes. Moreover, green fluorescent protein expression was absence or reduced in cpi-2a/yp170:gfp mutant oocytes, although it was expressed in one of the successfully developed embryos. Based on these results, we hypothesize that the sterility in cpi-2a(ok1256) mutant worms is potentially caused by two possible mechanisms: 1) defects in the uptake and/or processing of yolk proteins by the growing oocytes and 2) indirect induction of defects in cell-cell signaling that is critical for promoting germ line development, oocyte maturation, ovulation, and fertilization. A defect in any of these processes would have detrimental effects on the development of normal embryos and consequently normal production of progenies as we observed in cpi-2a mutant worms. This is the first study that demonstrates the expression of cysteine proteases and their endogenous inhibitor in the gonadal sheath cells surrounding germ cells and oocytes, which indirectly have established their potential involvement in proteolytic processing of molecules within the gonadal sheath cells, such as components of the extracellular matrix or the cytoskeletal proteins, which are essential for proper cell-cell signaling activities of the gonadal sheath cells during normal maturation and ovulation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号