首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The effects of two shoot densities (14 and 44 shoots/vine) andtwo crop levels (one and two clusters/shoot) on gas exchangeand water relations of field-grown Sauvignon blanc (Vitis viniferaL.) were studied in a factorial design over 3 years. The two-clustertreatments had 0.14 MPa higher stem water potential (stem),1.4 µmol m–2 s–1 higher assimilation rate(A), 0.04 mol m–2 s–1 higher stomatal conductance(gs) and 0.008 mol m–2 s–1 higher non-stomatal (gm)conductance. The two-cluster treatments had higher gs and transpirationrates than the one-cluster treatments, for similar stem. A quantitativeanalysis suggests that storage capacity cannot account for thesimultaneous increase in gs and stem in the two-cluster treatments.Similar gs-gm responses were found In the one- and two-clustertreatments, regard less of differences between the treatmentsin gs-stem response. Key words: Grapevine, stomatal conductance, assimilation rate, water relations  相似文献   

2.
Yield stress threshold (Y) and volumetric extensibility () arethe rheological properties that appear to control root growth.In this study they were measured in wheat roots by means ofparallel measurement of the growth rate (r) of intact wheatroots and of the turgor pressures (P) of individual cells withinthe expansion zone. Growth and turgor pressure were manipulatedby immersion in graded osmoticum (mannitol) solutions. Turgorwas measured with a pressure probe and growth rate by visualobservation. The influence of various growth conditions on Yand was investigated; (a) At 27 °C.In 0.5 mol m–3 CaCl2 r, P, Y and were20.7±4.6 µm min–1, 0.77±0.05 MPa,0.07±0.03 MPa and 26±1.9 µm min–1MPa–1 (expressed as increase in length), respectively.Following 24 h growth in 10 mol m–3 KC1 these parametersbecame 12.3±3.5 µm min–1, 0.72±0.04MPa, 0.13±0.01 MPa and 21±0.7 µm min–1MPa–1. After 24 h osmotic adjustment in 150 mol m–3mannitol/0.5 mol m–3 CaCl2 r= 19.6±4.2 µmmin–1, P = 0.68±0.05 MPa and Y and were 0.07±0.04MPa and 30±0.2 µm min–1 MPa–01, respectively.After 24 h growth in 350 mol m–3 mannitol/0.5 mol m–3CaCl2 r= 13.3±4.1 µm min–1, P= 0.58±0.07MPa, Y=0.12±0.01 MPa and ø 32±0.2 tim min–1MPa–1. During osmotic adjustment in 200 mol m–3mannitol/0.5 mol m–3 CaCl2, with or without KCl, the recoveryof growth rate corresponded to turgor pressure recovery (t1/2approximately 3 h). (b) At 15 °C. Lowered temperature dramatically influencedthe growth parameters which became r= 8.3±2.8 um min–1,P=0.78 MPa, r=<0.2 MPa and =15±0.1 µm min–1MPa–1. Therefore, Y and are influenced by 10 mol m–3 K+ ionsand low temperature. In each case the effective pressure forgrowth (P-Y) was large indicating that small fluctuations ofsoil water potential will not stop root elongation. Key words: Yield threshold, cell wall extensibility, wheat root growth, temperature, turgor pressur  相似文献   

3.
The effect of Chromium VI on leaf water potential (w), solutepotential (a), turgor potential (p) and relative water content(RWC) of primary and first trifoliatc leaves of Phaseolus vulgarisL. was studied under normal growth conditions and during anartificially induced water stress period in order to establishthe possible influence of this heavy metal on the water stressresistance of plants. Plants were grown on perlite with nutrientsolution containing 0, 1•0, 2•5, 5•0 or 10•0µg cm–3 Cr as Na2Cr2O7.2H2O. The effect of Cr onwater relations was highly concentration dependent, and primaryand first trifoliate leaves were affected differently. The growthreducing concentrations of Cr (2•5, 5•0 and 10•0µg cm–3) generally decreased s and w and increasedp in primary leaves. The 1•0 µg cm–3 Cr treatmentdid not affect growth, but altered water relations substantially:in primary leaves w and p were increased and s decreased, whilein trifoliate leaves the effect was the opposite. All Cr treatedplants resisted water stress for longer than control plants.The higher water stress resistance may be due to the lower sand to the increased cell wall elasticity observed in Cr VItreated plants. Key words: Phaseolus vulgaris, Chromium VI, water stress, Richter plot  相似文献   

4.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

5.
Calcium was measured with Ca2+ -selective electrodes in calciotrophicCAM plants. Several organic acid anions (citrate, isocitrate,malate, and malonate) were tested for their capacity to chelateCa2+ in solutions at pH 4.8. Free Ca2+ was also calculated fromthe stability constants of the chelates at pH 4.0 and pH 6.0.The strongest chelator at pH 4.8 was citrate, reducing freeCa2+ from 10 to 0.5 mol m–3, while isocitrate and malatedecreased ionized Ca2+ to 25% and 5O%, respectively. At pH 4.0isocitrate is somewhat more effective than citrate. Malonatehas only slight effects on free Ca2+ at pH 6.0. In tissue sapsfrom field-grown species of Crassula sp., Crassula expansa,Aloe ramosissima, and Aloe pillansii, concentrations of totalwater-soluble Ca2+ ranged from 25 to 196 mol m–3. Measurementswith Ca2+ -selective electrodes showed that ionized Ca2+ wasreduced to 62–88% in the presence of isocitrate. Diurnalfluctuations in malate were less important for Ca2+ chelation,which was also true for the situation in greenhouse-grown plantsof Kalancho daigremontiana, which were cultivated at differentCa2+ levels. Comparing the osmotic potentials measured in thetissue saps with those calculated from the concentrations ofthe different solutes gave further evidence for the chelationof Ca2+ by organic acid anions, since values for using onlythe free Ca2+ were much closer to the measured values of thanthose calculated with total water-soluble Ca2+. Key words: Calciotrophic plants, CAM, organic acids, free Ca2+, Ca2+ chelation  相似文献   

6.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

7.
The components of leaf water potential (l) and relative watercontent (RWC) were measured for stands of bambara groundnut(Vigna subterranea) exposed to three soil moisture regimes incontrolled-environment glasshouses at the Tropical Crops ResearchUnit, Sutton Bonington Campus. Treatments ranged from fullyirrigated (wet) to no irrigation from 35 days after sowing (DAS)(dry). RWC values varied between 92–96% for the wet treatment,but declined from 93% to 83% in the dry treatment as the seasonprogressed. l at midday decreased in both the wet and dry treatments,but the seasonal decline was more pronounced in the latter:seasonal minimum values were –1.19 and –2.08 MPa,respectively. Plants in the wet treatment maintained turgor(p) at about 0.5 MPa throughout the season, whereas values inthe dry treatment approached zero towards the end of the season.There was a linear relationship between p and l9 with p approachingzero at a l of –2.0 MPa. Mean daily leaf conductance wasconsistently higher in the wet treatment (0.46–0.79 cm-1)than in the intermediate and dry treatments (0.13–0.48cm s-1 Conductances in the intermediate and dry treatments weresimilar, and the lower evapotranspirational water losses inthe latter were attributable to its consistently lower leafarea indices (L): L at final harvest was 3.3, 3.3 and 1.9 forthe wet, intermediate and dry treatments. Bambara groundnutwas apparently able to maintain turgor through a combinationof osmotic adjustment, reductions in leaf area index and effectivestomatal regulation of water loss. Key words: Vigna subterranea, water relations, soil moisture  相似文献   

8.
Previous single-cell studies on the upper epidermis of barleyleaves have shown that cells differ systematically in theirsolute concentrations depending on their location relative tostomatal pores and veins and that during NaCl stress, gradientsin osmotic pressure () develop (Fricke et al., 1995, 1996; Hinde,1994). The objective of the present study was to address thequestion to which degree these intercellular differences insolute concentrations and it are associated with intercellulardifferences in turgor or water potential (). Epidermal cellsanalysed were located at various positions within the ridgeregions overlying large lateral or intermediate veins, in thetrough regions between those veins or in between stomata (i.e.interstomatal cells). Turgor pressure of cells was measuredusing a cell pressure probe, and of extracted cell sap wasdetermined by picolitre osmometry. For both large and intermediatelateral veins, there were no systematic differences in turgorbetween cells located at the base, mid or top of ridges, regardlessof whether plants were analysed at low or high PAR (10 or 300–400µmol photons m–2 s–1). However, turgor withina ridge region was not necessarily uniform, but could vary byup to 0.14 MPa (1.4 bar) between adjacent cells. In 60 out of63 plants, turgor of ridge cells was either slightly or significantlyhigher than turgor of trough (lowest turgor) or interstomatalcells (intermediate turgor). The significance and magnitudeof turgor differences was higher in plants analysed under highPAR or local air flow than in plants analysed under low PAR.The largest (up to 0.41 MPa) and consistently significant differencesin turgor were found in plants treated for 3–9 d priorto analysis with 100 mM NaCl. For both NaCl-treated and non-treated(control) plants, differences in turgor between cell types weremainly due to differences in since differences in were negligible(0.01–0.04 MPa). Epidermal cell , in NaCl-treated plantswas about 0.38 MPa more negative than in control plants dueto higher . Turgor pressures were similar. Following a suddenchange in rooting-medium or air humidity, turgor of both ridgeand trough cells responded within seconds and followed the sametime-course of relaxation. The half time (T1/2) of turgor relaxationwas not limited by the cell's T1/2 for water exchange. Key words: Barley leaf epidermis, cell turgor, heterogeneity, NaCl stress, osmotic pressure, water potential  相似文献   

9.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

10.
Salt Tolerance in the Succulent, Coastal Halophyte, Sarcocornia natalensis   总被引:2,自引:0,他引:2  
The effects of 0, 50, 100, 200, 300, 400 and 500 mol m–3NaCl on growth and ion accumulation in the succulent, coastalhalophyte Sarcocornia natalensis (Bunge ex Ung.-Sternb.) A.J. Scott were investigated. Increase in salinity from 0 to 300 mol m–3 NaCl stimulatedproduction of fresh, dry, and organic dry mass, increased succulenceand shifted resource allocation from roots to shoots. Growthwas optimal at 300 mol m–3 and decreased with furtherincrease in salinity. Water contributed to a large proportion of the increase in freshmass. Inorganic ions, especially Na+ and Cl– contributedsubstantially to the dry mass. At 300 mol m–3 NaCl inorganicions contributed to 37% of total dry mass and NaCl concentrationin the shoots was 482 mol m–3. Expressed sap osmotic potentialsdecreased from –2.10 to –3.95 MPa as salinity increasedfrom 0 to 300 mol m–3 NaCl. Massive accumulation of inorganicions, especially Na+ and Cl, accounted for 86% of theosmotic adjustment at 300 mol m–3 NaCl. Salinity treatments decreased the concentrations of K+ in shoots.Plant Na+ :K+ ratios increased steadily with salinity and reacheda maximum of 16.6 at 400 mol m3 NaCl. It is suggested that the exceptional salt tolerance of S. natalensisis achieved by massive inorganic ion accumulation which providessufficient solutes for osmoregulation, increased water fluxand turgor-induced growth. Key words: Sarcocornia natalensis, salt tolerance, halophyte  相似文献   

11.
Thomas, H. 1987. Physiological responses to drought of Loliumperenne L.: Measurement of, and genetic variation in, waterpotential, solute potential, elasticity and cell hydration.—J.exp. Bot. 38: 115–125. Clonally-replicated genotypes of Loiium perenne L. were grownin a controlled environment. Leaf water potential (w) osmoticpotential (s), turgor potential (p = ws), elasticity(E), leaf hydration (g water per g dry matter, H) and numberof green leaves per tiller (NGL) were measured before and duringa 42 d drought treatment. A simplified method of estimating E (at w < 1?0 MPa) usingonly six measurements was developed to permit a measurementrate of 8 leaves per hour. Measurement errors in all characterswere 3% or less. During drought, w and s (at w = 0?5 MPa) decreased significantly,p and E increased significantly, and H decreased slightly. Plantsize during drought was negatively correlated with s, and Hand positively correlated with p, osmotic adjustment, E andNGL. Measurements made on the genotypes before draughting didnot give a reliable indication of their physiological conditionafter adaptation to drought. Genetically controlled variation (‘broad sense heritability’)of drought-adapted plants for E was 15%, w 23%, s, 34%, p, 35%,H 34% and NGL 64%. The possibilities for, and effectivenessof, divergent selection of genotypes with high and low expressionof the characters are discussed. Key words: Water relations, Lolium, genetic variation  相似文献   

12.
The vacuolar pH (pHv) and the cytoplasmic pH (pHc) of the marinegiant-celled green alga Chaetomorpha darwinii were measuredby pH microelectrode techniques on extracted vacuolar sap, andby the [I4C]DMO distribution method respectively. Equilibrationof DMO occurred with a half-time of about 2 h, with an apparentPDMO of 3.6 x 10–5 cm s–1, but the vacuolar concentrationof free, undissociated DMO was always less than the externalconcentration. The explanation offered for freshwater giant-celledalgae of net DMO leakage across the plasmalemma cannotapply to Chaetomorpha darwinii, since electrically-driven DMOexit from the cytoplasm should be similar across the plasmalemmaand the tonoplast in these cells with large, vacuole-positivepotential differences across the tonoplast. pHc was accordinglycomputed assuming either tonoplast or plasmalemma equilibrationof DMO, with correction for DMO metabolism within the cell.pHc was 8.0–8.3 in the light in artificial seawater (pHoabout 8.0), was some 0.5 units lower in the dark, and was slightlylower with an external pH of 7. Vacuolar pH was 6.5–6.9,without consistent effects of illumination or of external pHof 7 rather than 8. While µH+ at the tonoplast was similarto that in giant-celled freshwater algae (although with a greatercontribution from relative to pH), µH+ at the plasmalemmawas less than 8 kJ mol–1, i.e. less than one-third ofthe value in freshwater green algae. µNa+ was some 13kJ mol–1 at the plasmalemma. The possibility that theprimary active transport process at the plasmalemma of Chaetomorphadarwinii (and certain other marine algae) is Na+ efflux ratherthan H+ efflux is discussed.  相似文献   

13.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

14.
Slater, R. J. and Bryant, J. A. 1987. RNA polymerase activityduring breakage of seed dormancy by low temperature treatmentof fruits of Acer platanoides (Norway maple).—J. exp.Bot. 38:1026–1032. Endogenous RNA polymerase activity has been characterized innuclei isolated from embryo axes of Acer platanoides. Optimalactivity was recorded at 4·0 mol m–3 MgCl2 and50 mol m–3 (NH4)2SO4 and total activity could be inhibitedby up to 30% by -amanitin. Stratification of fruits leads toa stimulation of RNA polymerase activity. A minimum of 3 d coldtreatment is required with at least 3-fold stimulation recordedafter 10 d at 4°C. The increased enzyme activity is resistantto -amanitin suggesting an effect on RNA polymerase I. Key words: Acer platanoides, RNA polymerase, seed dormancy  相似文献   

15.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

16.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

17.
Hansen, A. P. and Pate, J. S. 1987. Evaluation of the 15N naturalabundance method and xylem sap analysis for assessing N2 fixationof understorey legumes in jarrah (Eucalyptus marginata Donnex Sm.) forest in S.W. Australia.—J. exp. Bot 38: 1446–1458. Nodulated seedlings of Acacia pulchella, A. alata and A. extensawere grown in glasshouse sand culture under a range of levels(0–16 mol m3) of nitrate, supplied as 15NO3, or as unenrichedlaboratory grade nitrate (15N value 5·5%o). Nitrate at8·0 mol m 3 or above was highly inhibitory to growthof all species. Using 15N dilution analysis of the 15N enrichedcultures to measure symbiotic dependency, it was shown that15N values of the parallel unenriched cultures increased innear linear fashion from close to zero in fully symbiotic plantsto values close to that of the supplied NO3 in plants experiencingnitrate levels (4·0 mol m3 or above) inhibiting N2 fixationby over 90%. Xylem sap analyses (0·4 mol m3 NO3 treatments)showed asparagine as the major nitrogenous solute, relativelylittle spill-over of free nitrate, and no evidence of majorshifts in balance of amino compounds with increasing dependenceon nitrate. This essentially invalidated use of the techniqueas a field assay for N2 fixation by the species. 15N values for total N of soil sampled at 64 widely distributedsites in jarrah forest ranged from – 2·15 to +5·4(mean +2·1). Comparable values for soil mineral N (NH+4and NO3) were +0·3 to + 14·2 (mean +5·1).15N values of the total plant N of the legumes and of non-N2-fixingreference species were also highly variable between sites, withlittle evidence of reference plant N accurately reflecting the15N abundance of soil nitrogen, or of visibly well nodulatedlegume components showing consistently lower 15N values thantheir companion reference plants. At one site it was possibleto compare 15N values of first season seedling legumes withpreviously published estimates of their progressive N2 fixationusing C2H2 reduction assays. It was concluded that heterogeneity in 15N discrimination ofsoil within the ecosystem precluded effective use of the 15Nnatural abundance technique for assessing legume N2 fixation. Key words: Acacia spp., 15N natural abundance,, xylem sap analysis,, nitrogen fixation.  相似文献   

18.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

19.
Dead seeds that expand to nearly twice their normal volume whenfully hydrated are called osmotically distended (OD). Theseseeds swell osmotically in response to a water potential ()gradient created by solutes trapped in the free space betweenthe embryo and the surrounding endosperm or perisperm tissues.The formation of OD seeds in planta is poorly understood, althoughthey often occur in newly harvested muskmelon (Cucumis meloL. Reticulatus group) seed lots. Muskmelon fruit senescenceand seed germinability were contrasted with Armenian cucumber(Cucumis melo L. Flexuosus group) from 50 d after anthesis (DAA)to when seeds were released from the fruit. Fifty DAA muskmelonseeds were incubated in the laboratory for 30 d at 15, 25, and35 °C in factorial combinations of ethanol, acetic acid,and to simulate conditions in decaying fruits. Seed releasefrom Armenian cucumber occurred 20 d earlier than muskmelon.In both years of the study, less than 25% of the muskmelon seedsreleased from the fruit were viable, and 52% and 24% of thedead seeds were OD in year one and two, respectively. All Armeniancucumber seeds were viable or had germinated precociously atseed release. From 50 to 60 DAA, soluble solids in muskmelonfruit pericarp tissue declined from 11·4 to 7·8° Brix, pH declined from 6·2 to 5·1, increasedfrom –1·76 to –1·36 MPa, acetic acidincreased to 61 mol m–3;, and ethanol content rose from0·1% to 0·3%. O2 and CO2 partial pressures inthe seed cavities of 40 to 55 DAA fruits were generally 12 and8 kPa, respectively, at midday. All 50 DAA muskmelon seeds incubatedin acetic acid and ethanol germinated, because these chemicalscould not penetrate the perisperm tissue. Incubating 50 DAAmuskmelon seeds in the laboratory for 30 d at 15 or 25 °Chad little effect on germinability, regardless of . Germinationpercentages of muskmelon seeds incubated at 35 °C and 's<–1·28MPa were less than 50%. Muskmelon seeds died and became OD insidedecaying fruits in the field because of the combined effectsof low , high temperature, and low O2 partial pressures. Fruitsof muskmelon cultivars bred to resist decomposition and to havehigh sugar content showed decreased reproductive capacity comparedto Armenian cucumber which decomposed more rapidly. Key words: Muskmelon, seed, fruit, germination, senescence, water potential, temperature, oxygen, carbon dioxide  相似文献   

20.
In Trifolium repens L. there were immediate transient depolarizationsof the membrane electropotential (Evo) when KH2PO4 was addedto phosphate-free media, but these were of the same magnitudeas the controls (K2SO4 and KCI). Furthermore, the extents ofdepolarization were the same as the expected effect of the addedK+ calculated using the Goldman equation. There was no significantdepolarization on adding H3PO4 to buffered media. Consequently,there was no evidence for a depolarization caused by phosphate.This result provides evidence that the H+–H2PO4 symportin roots of T. repens operates with a stoichiometry of 1: 1. In a group of control plants ( + P plants) and a group whichwere stressed by reducing the supply of phosphate (– Pplants), the – P plants had lower values for Evo than+P plants (– 118 mV and – 130 mV, respectively).The absence of phosphate from the measurement media also reducedEvo (mean effect = 9 mV). A significant difference in Evo between– P and + P plants persisted when phosphate was addedto – P plants. The electropotential difference acrossthe tonoplast (Evo) in – P plants became more positivewith time. Key words: White clover, membrane transport, roots, tonoplast, symport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号