首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.

Background

Our previous studies have shown that OX40-OX40L interaction regulates the expression of nuclear factor of activated T cells c1(NFATc1) in ApoE−/− mice during atherogenesis. The aim of this study was to investigate whether OX40-OX40L interaction promotes Th cell activation via NFATc1 in ApoE−/− mice.

Methods and Results

The lymphocytes isolated from spleen of ApoE−/− mice were cultured with anti-CD3 mAb in the presence or absence of anti-OX40 or anti-OX40L antibodies. The expression of NFATc1 mRNA and protein in isolated lymphocytes were measured by real time PCR (RT-PCR) and flow cytometry (FCM), respectively. The proliferation of lymphocytes was analyzed by MTT method,and the expression of IL-2, IL-4 and IFN-γ in the cultured cells and supernatant were measured by RT-PCR and enzyme-linked immunosorbent assary (ELISA), respectively. After stimulating OX40-OX40L signal pathway, the expression of NFATc1 and the proliferation of leukocytes were significantly increased. Anti-OX40L suppressed the expression of NFATc1 in lymphocytes of ApoE−/− mice. Anti-OX40L or the NFATc1 inhibitor (CsA) markedly suppressed the cell proliferation induced by anti-OX40. Moreover, the expression of IL-2 and IFN-γ was increased in lymphocytes induced by OX40-OX40L interaction. Blocking OX40-OX40L interaction or NFATc1 down-regulated the expression of IL-2 and IFN-γ, but didn’t alter the expression of IL-4 in supernatants.

Conclusion

These results suggest that OX40-OX40L interaction promotes the proliferation and activation of lymphocytes through NFATc1.  相似文献   

3.
A finely-tuned innate immune response plays a pivotal role in protecting host against bacterial invasion during periodontal disease progression. Hyperlipidemia has been suggested to exacerbate periodontal health condition. However, the underlying mechanism has not been addressed. In the present study, we investigated the effect of hyperlipidemia on innate immune responses to periodontal pathogen Porphyromonas gingivalis infection. Apolipoprotein E-deficient and wild-type mice at the age of 20 weeks were used for the study. Peritoneal macrophages were isolated and subsequently used for the study of viable P. gingivalis infection. ApoE−/− mice demonstrated inhibited iNOS production and impaired clearance of P. gingivalis in vitro and in vivo; furthermore, ApoE−/− mice displayed disrupted cytokine production pattern in response to P. gingivalis, with a decreased production of tumor necrosis factor-α, interleukin-6 (IL-6), IL-1β and monocyte chemotactic protein-1. Microarray data demonstrated that Toll-like receptor (TLR) and NOD-like receptor (NLR) pathway were altered in ApoE−/− mice macrophages; further analysis of pattern recognition receptors (PRRs) demonstrated that expression of triggering receptors on myeloid cells-1 (TREM-1), an amplifier of the TLR and NLR pathway, was decreased in ApoE−/− mice macrophages, leading to decreased recruitment of NF-κB onto the promoters of the TNF-α and IL-6. Our data suggest that in ApoE−/− mice hyperlipidemia disrupts the expression of PRRs, and cripples the host’s capability to generate sufficient innate immune response to P. gingivalis, which may facilitate immune evasion, subgingival colonization and establishment of P. gingivalis in the periodontal niche.  相似文献   

4.

Background

Liraglutide is a glucagon-like peptide-1 analogue that stimulates insulin secretion and improves β-cell function. However, it is not clear whether liraglutide achieves its glucose lowering effect only by its known effects or whether other as yet unknown mechanisms are involved. The aim of this study was to examine the effects of liraglutide on Fibroblast growth factor-21 (FGF-21) activity in High-fat diet (HFD) fed ApoE−/− mice with adiponectin (Acrp30) knockdown.

Method

HFD-fed ApoE−/− mice were treated with adenovirus vectors expressing shAcrp30 to produce insulin resistance. Hyperinsulinemic-euglycemic clamp studies were performed to evaluate insulin sensitivity of the mouse model. QRT-PCR and Western blot were used to measure the mRNA and protein expression of the target genes.

Results

The combination of HFD, ApoE deficiency, and hypoadiponectinemia resulted in an additive effect on insulin resistance. FGF-21 mRNA expressions in both liver and adipose tissues were significantly increased while FGF-21 receptor 1 (FGFR-1) and β-Klotho mRNA levels in adipose tissue, as well as FGFR-1-3 and β-Klotho mRNA levels in liver were significantly decreased in this model. Liraglutide treatment markedly improved insulin resistance and increased FGF-21 expression in liver and FGFR-3 in adipose tissue, restored β-Klotho mRNA expression in adipose tissue as well as FGFR-1-3, β-Klotho levels and phosphorylation of FGFR1 up to the levels observed in control mice in liver. Liraglutide treatment also further increased FGF-21 proteins in liver and plasma. In addition, as shown by hyperinsulinemic-euglycemic clamp, liraglutide treatment also markedly improved glucose metabolism and insulin sensitivity in these animals.

Conclusion

These findings demonstrate an additive effect of HFD, ApoE deficiency, and adiponectin knockdown on insulin resistance and unveil that the regulation of glucose metabolism and insulin sensitivity by liraglutide may be partly mediated via increased FGF-21 and its receptors action.  相似文献   

5.
Toll-like receptor (TLR) activation has been implicated in acetaminophen (APAP)-induced hepatotoxicity. Herein, we hypothesize that TLR3 activation significantly contributed to APAP-induced liver injury. In fasted wildtype (WT) mice, APAP caused significant cellular necrosis, edema, and inflammation in the liver, and the de novo expression and activation of TLR3 was found to be necessary for APAP-induced liver failure. Specifically, liver tissues from similarly fasted TLR3-deficient (tlr3−/−) mice exhibited significantly less histological and biochemical evidence of injury after APAP challenge. Similar protective effects were observed in WT mice in which TLR3 was targeted through immunoneutralization at 3 h post-APAP challenge. Among three important death ligands (i.e. TNFα, TRAIL, and FASL) known to promote hepatocyte death after APAP challenge, TNFα was the only ligand that was significantly reduced in APAP-challenged tlr3−/− mice compared with APAP-challenged WT controls. In vivo studies demonstrated that TLR3 activation contributed to TNFα production in the liver presumably via F4/80+ and CD11c+ immune cells. In vitro studies indicated that there was cooperation between TNFα and TLR3 in the activation of JNK signaling in isolated and cultured liver epithelial cells (i.e. nMuLi). Moreover, TLR3 activation enhanced the expression of phosphorylated JNK in APAP injured livers. Thus, the current study demonstrates that TLR3 activation contributes to APAP-induced hepatotoxicity.  相似文献   

6.
7.
Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.3 ppm for 24–72 h). We hypothesized that γδ T cells are the main producers of IL-17A after subacute ozone. To explore this hypothesis we exposed wildtype mice and mice deficient in γδ T cells (TCRδ−/−) to ozone or room air. Ozone-induced increases in BAL macrophages and neutrophils were attenuated in TCRδ−/− mice. Ozone increased the number of γδ T cells in the lungs and increased pulmonary Il17a mRNA expression and the number of IL-17A+ CD45+ cells in the lungs and these effects were abolished in TCRδ−/− mice. Ozone-induced increases in factors downstream of IL-17A signaling, including G-CSF, IL-6, IP-10 and KC were also decreased in TCRδ−/− versus wildtype mice. Neutralization of IL-17A during ozone exposure in wildtype mice mimicked the effects of γδ T cell deficiency. TNFR2 deficiency and etanercept, a TNFα antagonist, also reduced ozone-induced increases in Il17a mRNA, IL-17A+ CD45+ cells and BAL G-CSF as well as BAL neutrophils. TNFR2 deficient mice also had decreased ozone-induced increases in Ccl20, a chemoattractant for IL-17A+ γδ T cells. Il17a mRNA and IL-17A+ γδ T cells were also lower in obese Cpefat versus lean WT mice exposed to subacute ozone, consistent with the reduced neutrophil recruitment observed in the obese mice. Taken together, our data indicate that pulmonary inflammation induced by subacute ozone requires γδ T cells and TNFα-dependent recruitment of IL-17A+ γδ T cells to the lung.  相似文献   

8.
9.
10.
11.

Aims

Option to attenuate atherosclerosis by depleting B2 cells is currently limited to anti-CD20 antibodies which deplete all B-cell subtypes. In the present study we evaluated the capacity of a monoclonal antibody to B cell activating factor-receptor (BAFFR) to selectively deplete atherogenic B2 cells to prevent both development and progression of atherosclerosis in the ApoE−/− mouse.

Methods and Results

To determine whether the BAFFR antibody prevents atherosclerosis development, we treated ApoE−/− mice with the antibody while feeding them a high fat diet (HFD) for 8 weeks. Mature CD93 CD19+ B2 cells were reduced by treatment, spleen B-cell zones disrupted and spleen CD20 mRNA expression decreased while B1a cells and non-B cells were spared. Atherosclerosis was ameliorated in the hyperlipidemic mice and CD19+ B cells, CD4+ and CD8+ T cells were reduced in atherosclerotic lesions. Expressions of proinflammatory cytokines, IL1β, TNFα, and IFNγ in the lesions were also reduced, while MCP1, MIF and VCAM-1 expressions were unaffected. Plasma immunoglobulins were reduced, but MDA-oxLDL specific antibodies were unaffected. To determine whether anti-BAFFR antibody ameliorates progression of atherosclerosis, we first fed ApoE−/− mice a HFD for 6 weeks, and then instigated anti-BAFFR antibody treatment for a further 6 week-HFD. CD93 CD19+ B2 cells were selectively decreased and atherosclerotic lesions were reduced by this treatment.

Conclusion

Anti-BAFFR monoclonal antibody selectively depletes mature B2 cells while sparing B1a cells, disrupts spleen B-cell zones and ameliorates atherosclerosis development and progression in hyperlipidemic ApoE−/− mice. Our findings have potential for clinical translation to manage atherosclerosis-based cardiovascular diseases.  相似文献   

12.

Background

Phenobarbital (PB) is the most well-known among numerous non-genotoxic carcinogens that cause the development of hepatocellular carcinoma (HCC). PB activates nuclear xenobiotic receptor Constitutive Active/Androstane Receptor (CAR; NR1I3) and this activation is shown to determine PB promotion of HCC in mice. The molecular mechanism of CAR-mediated tumor promotion, however, remains elusive at the present time. Here we have identified Growth Arrest and DNA Damage-inducible 45β (GADD45B) as a novel CAR target, through which CAR represses cell death.

Methodology/Principal Findings

PB activation of nuclear xenobiotic receptor CAR is found to induce the Gadd45b gene in mouse liver throughout the development of HCC as well as in liver tumors. Given the known function of GADD45B as a factor that represses Mitogen-activated protein Kinase Kinase 7 - c-Jun N-terminal Kinase (MKK7-JNK) pathway-mediated apoptosis, we have now demonstrated that CAR interacts with GADD45B to repress Tumor Necrosis Factor α ( TNFα)-induced JNK1 phosphorylation as well as cell death. Primary hepatocytes, prepared from Car+/+, Car−/−, Gadd45b+/+ and Gadd45b−/− mice, were treated with TNFα and Actinomycin D to induce phosphorylation of JNK1 and cell death. Co-treatment with the CAR activating ligand TCPOBOP (1,4 bis[2-(3,5-dichloropyridyloxy)]benzene) has resulted in repression of both phosphorylation and cell death in the primary hepatocytes from Car+/+ but not Car−/−mice. Repression by TCPOBOP was not observed in those prepared from Gadd45b−/− mice. In vitro protein-protein interaction and phosphorylation assays have revealed that CAR interacts with MKK7 and represses the MKK7-mediated phosphorylation of JNK1.

Conclusions/Significance

CAR can form a protein complex with GADD45B, through which CAR represses MKK7-mediated phosphorylation of JNK1. In addition to activating the Gadd45b gene, CAR may repress death of mouse primary hepatocytes by forming a GADD45B complex and repressing MKK7-mediated phosphorylation of JNK1. The present finding that CAR can repress cell death via its interaction with GADD45B provides an insight for further investigations into the CAR-regulated molecular mechanism by which PB promotes development of HCC.  相似文献   

13.

Background

In eukaryotic cells, DNA polymerase δ (Polδ), whose catalytic subunit p125 is encoded in the Pold1 gene, plays a central role in chromosomal DNA replication, repair, and recombination. However, the physiological role of the Polδ in mammalian development has not been thoroughly investigated.

Methodology/Principal Findings

To examine this role, we used a gene targeting strategy to generate two kinds of Pold1 mutant mice: Polδ-null (Pold1 −/−) mice and D400A exchanged Polδ (Pold1 exo/exo) mice. The D400A exchange caused deficient 3′–5′ exonuclease activity in the Polδ protein. In Polδ-null mice, heterozygous mice developed normally despite a reduction in Pold1 protein quantity. In contrast, homozygous Pold1 −/− mice suffered from peri-implantation lethality. Although Pold1 −/− blastocysts appeared normal, their in vitro culture showed defects in outgrowth proliferation and DNA synthesis and frequent spontaneous apoptosis, indicating Polδ participates in DNA replication during mouse embryogenesis. In Pold1 exo/exo mice, although heterozygous Pold1 exo/+ mice were normal and healthy, Pold1 exo/exo and Pold1 exo/− mice suffered from tumorigenesis.

Conclusions

These results clearly demonstrate that DNA polymerase δ is essential for mammalian early embryogenesis and that the 3′–5′ exonuclease activity of DNA polymerase δ is dispensable for normal development but necessary to suppress tumorigenesis.  相似文献   

14.
It is increasingly recognized that psychological stress influences inflammatory responses and mood. Here, we investigated whether psychological stress (combined acoustic and restraint stress) activates the tryptophan (Trp) catabolizing enzyme indoleamine 2,3-dioxygenase 1(IDO1) and thereby alters the immune homeostasis and behavior in mice. We measured IDO1 mRNA expression and plasma levels of Trp catabolites after a single 2-h stress session and in repeatedly stressed (4.5-days stress, 2-h twice a day) naïve BALB/c mice. A role of cytokines in acute stress-induced IDO1 activation was studied after IFNγ and TNFα blockade and in IDO1−/− mice. RU486 and 1-Methyl-L-tryptophan (1-MT) were used to study role of glucocorticoids and IDO1 on Trp depletion in altering the immune and behavioral response in repeatedly stressed animals. Clinical relevance was addressed by analyzing IDO1 activity in patients expecting abdominal surgery. Acute stress increased the IDO1 mRNA expression in brain, lung, spleen and Peyer''s patches (max. 14.1±4.9-fold in brain 6-h after stress) and resulted in a transient depletion of Trp (−25.2±6.6%) and serotonin (−27.3±4.6%) from the plasma measured 6-h after stress while kynurenine levels increased 6-h later (11.2±9.3%). IDO1 mRNA up-regulation was blocked by anti-TNFα and anti-IFNγ treatment. Continuous IDO1 blockade by 1-MT but not RU486 treatment normalized the anti-bacterial defense and attenuated increased IL-10 inducibility in splenocytes after repeated stress as it reduced the loss of body weight and behavioral alterations. Moreover, kynurenic acid which remained increased in 1-MT treated repeatedly stressed mice was identified to reduce the TNFα inducibility of splenocytes in vitro and in vivo. Thus, psychological stress stimulates cytokine-driven IDO1 activation and Trp depletion which seems to have a central role for developing stress-induced immunosuppression and behavioral alteration. Since patients showed Trp catabolism already prior to surgery, IDO is also a possible target enzyme for humans modulating immune homeostasis and mood.  相似文献   

15.
16.
Interleukin (IL-) 36 cytokines (previously designated as novel IL-1 family member cytokines; IL-1F5– IL-1F10) constitute a novel cluster of cytokines structurally and functionally similar to members of the IL-1 cytokine cluster. The effects of IL-36 cytokines in inflammatory lung disorders remains poorly understood. The current study sought to investigate the effects of IL-36α (IL-1F6) and test the hypothesis that IL-36α acts as a pro-inflammatory cytokine in the lung in vivo. Intratracheal instillation of recombinant mouse IL-36α induced neutrophil influx in the lungs of wild-type C57BL/6 mice and IL-1αβ−/− mice in vivo. IL-36α induced neutrophil influx was also associated with increased mRNA expression of neutrophil-specific chemokines CXCL1 and CXCL2 in the lungs of C57BL/6 and IL-1αβ−/− mice in vivo. In addition, intratracheal instillation of IL-36α enhanced mRNA expression of its receptor IL-36R in the lungs of C57BL/6 as well as IL-1αβ−/− mice in vivo. Furthermore, in vitro incubation of CD11c+ cells with IL-36α resulted in the generation of neutrophil-specific chemokines CXCL1, CXCL2 as well as TNFα. IL-36α increased the expression of the co-stimulatory molecule CD40 and enhanced the ability of CD11c+ cells to induce CD4+ T cell proliferation in vitro. Furthermore, stimulation with IL-36α activated NF-κB in a mouse macrophage cell line. These results demonstrate that IL-36α acts as a pro-inflammatory cytokine in the lung without the contribution of IL-1α and IL-1β. The current study describes the pro-inflammatory effects of IL-36α in the lung, demonstrates the functional redundancy of IL-36α with other agonist cytokines in the IL-1 and IL-36 cytokine cluster, and suggests that therapeutic targeting of IL-36 cytokines could be beneficial in inflammatory lung diseases.  相似文献   

17.
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.  相似文献   

18.
Atherosclerosis arising from the pro-inflammatory conditions associated with chronic kidney disease (CKD) increases major cardiovascular morbidity and mortality. Rapamycin (RAPA) is known to inhibit atherosclerosis under CKD and non-CKD conditions, but it can cause dyslipidemia; thus, the co-application of lipid-lowering agents is recommended. Atorvastatin (ATV) has been widely used to reduce serum lipids levels, but its synergistic effect with RAPA in CKD remains unclear. Here, we analyzed the effect of their combined treatment on atherosclerosis stimulated by CKD in apolipoprotein E-deficient (ApoE−/−) mice. Oil Red O staining revealed that treatment with RAPA and RAPA+ ATV, but not ATV alone, significantly decreased the atherosclerotic lesions in the aorta and aortic sinus, compared to those seen in the control (CKD) group. The co-administration of RAPA and ATV improved the serum lipid profile and raised the expression levels of proteins involved in reverse cholesterol transport (LXRα, CYP7A1, ABCG1, PPARγ, ApoA1) in the liver. The CKD group showed increased levels of various genes encoding atherosclerosis-promoting cytokines in the spleen (Tnf-α, Il-6 and Il-1β) and aorta (Tnf-α and Il-4), and these increases were attenuated by RAPA treatment. ATV and RAPA+ATV decreased the levels of Tnf-α and Il-1β in the spleen, but not in the aorta. Together, these results indicate that, in CKD-induced ApoE−/− mice, RAPA significantly reduces the development of atherosclerosis by regulating the expression of inflammatory cytokines and the co-application of ATV improves lipid metabolism.  相似文献   

19.

Aim

To study whether 18F-FDG can be used for in vivo imaging of atherogenesis by examining the correlation between 18F-FDG uptake and gene expression of key molecular markers of atherosclerosis in apoE−/− mice.

Methods

Nine groups of apoE−/− mice were given normal chow or high-fat diet. At different time-points, 18F-FDG PET/contrast-enhanced CT scans were performed on dedicated animal scanners. After scans, animals were euthanized, aortas removed, gamma counted, RNA extracted from the tissue, and gene expression of chemo (C-X-C motif) ligand 1 (CXCL-1), monocyte chemoattractant protein (MCP)-1, vascular cell adhesion molecule (VCAM)-1, cluster of differentiation molecule (CD)-68, osteopontin (OPN), lectin-like oxidized LDL-receptor (LOX)-1, hypoxia-inducible factor (HIF)-1α, HIF-2α, vascular endothelial growth factor A (VEGF), and tissue factor (TF) was measured by means of qPCR.

Results

The uptake of 18F-FDG increased over time in the groups of mice receiving high-fat diet measured by PET and ex vivo gamma counting. The gene expression of all examined markers of atherosclerosis correlated significantly with 18F-FDG uptake. The strongest correlation was seen with TF and CD68 (p<0.001). A multivariate analysis showed CD68, OPN, TF, and VCAM-1 to be the most important contributors to the uptake of 18F-FDG. Together they could explain 60% of the 18F-FDG uptake.

Conclusion

We have demonstrated that 18F-FDG can be used to follow the progression of atherosclerosis in apoE−/− mice. The gene expression of ten molecular markers representing different molecular processes important for atherosclerosis was shown to correlate with the uptake of 18F-FDG. Especially, the gene expressions of CD68, OPN, TF, and VCAM-1 were strong predictors for the uptake.  相似文献   

20.

Objective

Chronic stress is an important risk factor for atherosclerotic diseases. Our previous studies have shown that chronic unpredictable mild stress (CUMS) accelerates atherosclerosis and up-regulates TLR4/NF-κB expression in apoE-/- mice. However, TLR4/NF-κB signaling whether directly contributes to the development of atherosclerosis in CUMS mice is unclear. We hypothesized that the interference of TLR4/NF-κB can ameliorate CUMS-induced inflammation and atherosclerosis in apoE-/- mice.

Methods

ApoE-/- mice were exposed to 12 weeks CUMS. Ad-siRNA TLR4 was given by tail vein injection (10 μl/mouse, every 5 days), and PDTC (an inhibitor of NF-κB) was given by intraperitoneal injection (60 mg/kg, once a day). Plasma corticosterone concentrations were determined by solid-phase 125I radioimmunoassay. Atherosclerosis lesions in aortic sinuses were evaluated and quantified by IMAGEPRO PLUS. Western blotting was used to detect the expression of TLR4, NF-κB, and IL-1β in aortas of the mice. Plasma lipid profiles, IL-1β, TNF-α, and MCP-1 were measured by ELISA.

Results

Our results indicated that CUMS apoE-/- mice treatment with siRNA TLR4 significantly decreased atherosclerosis and down-regulated TLR4, NF-κB, and inflammatory cytokines. PDTC also remarkably reduced atherosclerosis and the levels of IL-1β, TNF-α and MCP-1 in plasma. However, Treatment with siRNA TLR4 or PDTC had no effect on plasma corticosterone levels, and lipid profiles.

Conclusions

TLR4/NF-κB pathway may participate in CUMS-induced atherosclerosis through activation of proinflammatory cytokines in apoE-/- mice. Our data may provide a new potential therapeutic target for prevention of CUMS -induced atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号