首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Marine mammals are at risk for infection by fecal-associated zoonotic pathogens when they swim and feed in polluted nearshore marine waters. Because of their tendency to consume 25-30% of their body weight per day in coastal filter-feeding invertebrates, southern sea otters (Enhydra lutris nereis) can act as sentinels of marine ecosystem health in California. Feces from domestic and wildlife species were tested to determine prevalence, potential virulence, and diversity of selected opportunistic enteric bacterial pathogens in the Monterey Bay region. We hypothesized that if sea otters are sentinels of coastal health, and fecal pollution flows from land to sea, then sea otters and terrestrial animals might share the same enteric bacterial species and strains. Twenty-eight percent of fecal samples tested during 2007-2010 were positive for one or more potential pathogens. Campylobacter spp. were isolated most frequently, with an overall prevalence of 11%, followed by Vibrio cholerae (9%), Salmonella spp. (6%), V. parahaemolyticus (5%), and V. alginolyticus (3%). Sea otters were found positive for all target bacteria, exhibiting similar prevalences for Campylobacter and Salmonella spp. but greater prevalences for Vibrio spp. when compared to terrestrial animals. Fifteen Salmonella serotypes were detected, 11 of which were isolated from opossums. This is the first report of sea otter infection by S. enterica Heidelberg, a serotype also associated with human clinical disease. Similar strains of S. enterica Typhimurium were identified in otters, opossums, and gulls, suggesting the possibility of land-sea transfer of enteric bacterial pathogens from terrestrial sources to sea otters.  相似文献   

2.
Populations of sea otters, seals and sea lions have collapsed across much of southwest Alaska over the past several decades. The sea otter decline set off a trophic cascade in which the coastal marine ecosystem underwent a phase shift from kelp forests to deforested sea urchin barrens. This interaction in turn affected the distribution, abundance and productivity of numerous other species. Ecological consequences of the pinniped declines are largely unknown. Increased predation by transient (marine mammal-eating) killer whales probably caused the sea otter declines and may have caused the pinniped declines as well. Springer et al. proposed that killer whales, which purportedly fed extensively on great whales, expanded their diets to include a higher percentage of sea otters and pinnipeds following a sharp reduction in great whale numbers from post World War II industrial whaling. Critics of this hypothesis claim that great whales are not now and probably never were an important nutritional resource for killer whales. We used demographic/energetic analyses to evaluate whether or not a predator–prey system involving killer whales and the smaller marine mammals would be sustainable without some nutritional contribution from the great whales. Our results indicate that while such a system is possible, it could only exist under a narrow range of extreme conditions and is therefore highly unlikely.  相似文献   

3.
The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.  相似文献   

4.
Toxin production by harmful cyanobacteria blooms (CyanoHABs) constitutes a major, worldwide environmental threat to freshwater aquatic resources that is expected to expand in scale and intensity with global climate change. Extensive literature exists on the most frequently encountered cyanotoxin, microcystin, in freshwater environments. Yet, the expansion of microcystin producing CyanoHABs and the transport of contaminated inland waters to estuarine and coastal marine waters has only recently received attention. This paper synthesizes information on the salinity tolerance of microcystin producing cyanobacteria and summarizes available case reports on microcystin presence in estuarine and coastal waters. We highlight a potential food-borne exposure route to humans by reviewing the growing body of evidence that shows microcystins can accumulate in coastal seafood. These cases reinforce the importance of freshwater nutrient reduction and the need for freshwater management efforts to look beyond lacustrine and riverine systems. Events reviewed here likely only represent a small proportion of cases where microcystins affect estuarine and coastal waters. We strongly suggest increased monitoring and research efforts to understand, react to, and prevent ecological and health problems associated with the growing problem of toxic CyanoHABs in coastal environments.  相似文献   

5.
Microcystins, toxins produced by cyanobacteria, may play a role in fish kills, although their specific contribution remains unclear. A better understanding of the eco-toxicological effects of microcystins is hampered by a lack of analyses at different trophic levels in lake foodwebs. We present 3 years of monitoring data, and directly compare the transfer of microcystin in the foodweb starting with the uptake of (toxic) cyanobacteria by two different filter feeders: the cladoceran Daphnia galeata and the zebra mussel Dreissena polymorpha. Furthermore foodwebs are compared in years in which the colonial cyanobacterium Microcystis aeruginosa or the filamentous cyanobacterium Planktothrix agardhii dominated; there are implications in terms of the types and amount of microcystins produced and in the ingestion of cyanobacteria. Microcystin concentrations in the seston commonly reached levels where harmful effects on zooplankton are to be expected. Likewise, concentrations in zooplankton reached levels where intoxication of fish is likely. The food chain starting with Dreissena (consumed by roach and diving ducks) remained relatively free from microcystins. Liver damage, typical for exposure to microcystins, was observed in a large fraction of the populations of different fish species, although no relation with the amount of microcystin could be established. Microcystin levels were especially high in the livers of planktivorous fish, mainly smelt. This puts piscivorous birds at risk. We found no evidence for biomagnification of microcystins. Concentrations in filter feeders were always much below those in the seston, and yet vectorial transport to higher trophic levels took place. Concentrations of microcystin in smelt liver exceeded those in the diet of these fish, but it is incorrect to compare levels in a selected organ to those in a whole organism (zooplankton). The discussion focuses on the implications of detoxication and covalent binding of microcystin for the transfer of the toxin in the foodweb. It seems likely that microcystins are one, but not the sole, factor involved in fish kills during blooms of cyanobacteria.  相似文献   

6.
Pedro Rui  Beja 《Journal of Zoology》1991,225(1):141-152
The diet of otters was studied in closely associated freshwater, brackish and marine habitats, from spraints collected on the Portuguese south-west coast over an 18-month period. In areas where marine prey was the only available resource, diet was dominated by blennies, wrasses and gobies, but other prey was taken in areas near coastal lagoons, marshes and estuaries. Eels and amphibians were considered the typical prey of freshwater habitats, and grey mullet the typical prey of brackish water habitats. If the inland habitats near the coast were large enough, otters preferred to forage there rather than in the sea. In one area where otters alternatively used marine and inland habitats, the former were used most extensively in autumn and winter, and the latter in spring and summer. It is suggested that otters prefer to forage inland rather than in the sea.  相似文献   

7.
The occurrence of freshwater harmful algal bloom toxins impacting the coastal ocean is an emerging threat, and the potential for invertebrate prey items to concentrate toxin and cause harm to human and wildlife consumers is not yet fully recognized. We examined toxin uptake and release in marine mussels for both particulate and dissolved phases of the hepatotoxin microcystin, produced by the freshwater cyanobacterial genus Microcystis. We also extended our experimental investigation of particulate toxin to include oysters (Crassostrea sp.) grown commercially for aquaculture. California mussels (Mytilus californianus) and oysters were exposed to Microcystis and microcystin toxin for 24 h at varying concentrations, and then were placed in constantly flowing seawater and sampled through time simulating riverine flushing events to the coastal ocean. Mussels exposed to particulate microcystin purged the toxin slowly, with toxin detectable for at least 8 weeks post-exposure and maximum toxin of 39.11 ng/g after exposure to 26.65 μg/L microcystins. Dissolved toxin was also taken up by California mussels, with maximum concentrations of 20.74 ng/g after exposure to 7.74 μg/L microcystin, but was purged more rapidly. Oysters also took up particulate toxin but purged it more quickly than mussels. Additionally, naturally occurring marine mussels collected from San Francisco Bay tested positive for high levels of microcystin toxin. These results suggest that ephemeral discharge of Microcystis or microcystin to estuaries and the coastal ocean accumulate in higher trophic levels for weeks to months following exposure.  相似文献   

8.
利用联合国粮农组织(FAO)1950-2011年渔获物捕捞量资料, 分析了我国海域(包括大陆海域、台湾海域、香港海域和澳门海域)129种渔获物的营养级指数变化特征。研究表明, 1950-1974年我国海洋营养级指数在3.45左右波动, 1975-1978年下降至3.35左右, 1982-1987年急剧下降到3.25并维持到1996年, 1997-2011年平稳回升至3.34。与全球海洋营养级指数相比, 1984年之前我国高于全球水平, 而1984年之后则低于全球水平。就生物类群而言, 鱼类对我国海洋营养级指数的贡献最大, 达73.1-85.8%; 甲壳动物次之, 为9.2-15.5%; 软体动物较小, 为3.3-11.6%; 其他无脊椎动物的贡献最小, 不超过1.8%。过度捕捞使我国部分渔获物由原来的长寿命、高营养级的底层鱼类变为现在的短寿命、低营养级的无脊椎动物和中上层鱼类。渔业捕捞许可管理制度、禁渔期和禁渔区制度、海洋捕捞产量“零增长”和“负增长”计划、增殖放流、扩大海洋保护区面积等措施的实施可能是我国海洋营养级指数回升的主要原因。  相似文献   

9.
The importance of the marine environment to Eurasian otters is currently poorly understood. Wales is one of the few countries where coastal activity has been recorded and an increase in marine otter sightings could indicate remarkable developments within Welsh populations. The trophic niche of coastal otter populations around Pembrokeshire was investigated over a 12-month period. Marine activity was more widespread than previously thought and marine prey formed the largest component of otter diet, although, otters also consumed freshwater and terrestrial prey throughout the year. Otter diet was very diverse compared to other European coastal populations and a spring contraction in trophic niche width coincided with the estimated timing of breeding activity. Seasonal variation in prey composition was predominantly due to differences in the consumption of alternate prey types. In areas where wetlands are fragmented and populations of freshwater fish are declining, the marine environment may become an increasingly important habitat for otters. It is necessary to define the historical importance of coastal populations to otter conservation. Coastal areas are often subject to pressure from human activities, so the impact of disturbance needs to be assessed. Importantly, there is no verified otter survey method for coastal areas, so the use of marine habitat is likely to be underestimated.  相似文献   

10.
Southern Sea Otter as a Sentinel of Marine Ecosystem Health   总被引:1,自引:0,他引:1  
The southern sea otter (Enhydra lutris nereis) is listed as threatened under the Endangered Species Act (ESA) and is a keystone species, strongly influencing the abundance and diversity of the other species within its kelp forest ecosystem. This is accomplished primarily by preying upon urchins that eat the kelp stipe and holdfast, which can reduce a kelp forest to an urchin barren. Sea otters are very susceptible to marine pollutants such as petroleum, which may be directly toxic and/or alter their furs insulating properties. Sea otters are an excellent sentinel species. They eat approximately 25% of their body weight per day in shellfish and other invertebrates, and can concentrate and integrate chemical contaminants. In addition, they appear to be susceptible to a number of diseases and parasites that may have anthropogenic origins, and shellfish may serve as an intermediary for some of these infections. Many of the shellfish the otters eat are also harvested for human food. In their role as sentinels, sea otter health has implications for human health, economic sustainability of shellfisheries, as well as overall marine ecosystem health. The recent southern sea otter decline has been viewed with some alarm by conservationists and, indeed, recovery seems a long way off. High mortality rather than depressed recruitment appears to underlie the decline. A good deal of debate has centered on the role of infectious diseases and parasites, exposure to contaminants, nutrition and prey availability, net and pot fishery interactions, and other sources of mortality. Current research is being done related to major classes of mortality, various types of pollutants and some specific organisms causing southern sea otter mortality, and their implications for marine ecosystem health and sustainability.  相似文献   

11.
Sea otters in California are commonly infected with Toxoplasma gondii. A unique Type X strain is responsible for 72% of otter infections, but its prevalence in terrestrial animals and marine invertebrates inhabiting the same area was unknown. Between 2000 and 2005, 45 terrestrial carnivores (lions, bobcats, domestic cats and foxes) and 1396 invertebrates (mussels, clams and worms) were screened for T. gondii using PCR and DNA sequencing to determine the phylogeographic distribution of T. gondii archetypal I, II, III and Type X genotypes. Marine bivalves have been shown to concentrate T. gondii oocysts in the laboratory, but a comprehensive survey of wild invertebrates has not been reported. A California mussel from an estuary draining into Monterey Bay was confirmed positive for Type X T. gondii by multilocus PCR and DNA sequencing at the B1 and SAG1 loci. This mussel was collected from nearshore marine waters just after the first significant rainfall event in the fall of 2002. Of 45 carnivores tested at the B1, SAG1, and GRA6 typing loci, 15 had PCR-confirmed T. gondii infection; 11 possessed alleles consistent with infection by archetypal Type I, II or III strains and 4 possessed alleles consistent with Type X T. gondii infection. No non-canonical alleles were identified. The four T. gondii strains with Type X alleles were identified from two mountain lions, a bobcat and a fox residing in coastal watersheds adjacent to sea otter habitat near Monterey Bay and Estero Bay. Confirmation of Type X T. gondii in coastal-dwelling felids, canids, a marine bivalve and nearshore-dwelling sea otters supports the hypotheses that feline faecal contamination is flowing from land to sea through surface runoff, and that otters can be infected with T. gondii via consumption of filter-feeding marine invertebrates.  相似文献   

12.
Toxoplasma gondii affects a wide variety of hosts including threatened southern sea otters (Enhydra lutris nereis) which serve as sentinels for the detection of the parasite's transmission into marine ecosystems. Toxoplasmosis is a major cause of mortality and contributor to the slow rate of population recovery for southern sea otters in California. An updated seroprevalence analysis showed that 52% of 305 freshly dead, beachcast sea otters and 38% of 257 live sea otters sampled along the California coast from 1998 to 2004 were infected with T. gondii. Areas with high T. gondii exposure were predominantly sandy bays near urban centres with freshwater runoff. Genotypic characterisation of 15 new T. gondii isolates obtained from otters in 2004 identified only X alleles at B1 and SAG1. A total of 38/50 or 72% of all otter isolates so far examined have been infected with a Type X strain. Type X isolates were also obtained from a Pacific harbor seal (Phoca vitulina) and California sea lion (Zalophus californianus). Molecular analysis using the C8 RAPD marker showed that the X isolates were more genetically heterogeneous than archetypal Type I, II and III genotypes of T. gondii. The origin and transmission of the Type X T. gondii genotype are not yet clear. Sea otters do not prey on known intermediate hosts for T. gondii and vertical transmission appears to play a minor role in maintaining infection in the populations. Therefore, the most likely source of infection is by infectious, environmentally resistant oocysts that are shed in the feces of felids and transported via freshwater runoff into the marine ecosystem. As nearshore predators, otters serve as sentinels of protozoal pathogen flow into the marine environment since they share the same environment and consume some of the same foods as humans. Investigation into the processes promoting T. gondii infections in sea otters will provide a better understanding of terrestrial parasite flow and the emergence of disease at the interface between wildlife, domestic animals and humans.  相似文献   

13.
Lake Naivasha, an important inland water ecosystem and a crucial freshwater resource in the Great African Rift Valley, has displayed clear signals of degradation in recent decades. We studied the phytoplankton composition and biomass levels in the period 2001–2013 and noted a progressive increase in the occurrence of potentially toxic cyanobacteria. Analyses for the presence of cyanotoxins such as microcystins (MC), cylindrospermopsin (CYN) and anatoxin-a (ATX-a) were carried out on samples collected in 2008–2013. Among the cyanotoxins tested, low concentrations of MC were detected in the lake. This is the first record of the occurrence of MC in Lake Naivasha. For the first time, molecular phylogenetic investigations of field clones of cyanobacteria from Lake Naivasha were carried out to establish the taxa of the dominant species. Amplification of the aminotrasferase (AMT) domain responsible for cyanotoxin production confirmed the presence of the mcyE gene belonging to the microcystin synthesis gene cluster in field samples containing Microcystis and Planktothrix species. These findings suggest that toxin producing cyanobacteria could become a threat to users of this over-exploited tropical lake in the near future.  相似文献   

14.
We determined the hepatic and renal concentrations of Cd, Pb, Zn, Cu, and Fe in (1) marine mammals (three bottle-nosed dolphins, six California sea lions, and one sea otter), (2) freshwater and brackish-water mammals (one Oriental short-clawed otter and four European river otters), and (3) sea birds (three rock-hopper penguins, two king penguins, three Humboldt penguins, four Macaroni penguins, and four Magellanic penguins), all of which were kept in a zoo and an aquarium in Japan. We investigated the species-specificity of Cd accumulation in these aquatic animals. We also presented the basic data on metal concentrations. The concentrations of Cd in liver and kidney tended to be higher in marine mammals than in freshwater mammals. Many penguins, sea birds, showed high Cd concentrations. These results suggest that the habits of these animal species may be involved in accumulation of Cd. Pb concentrations were below the detection limit or low in both liver and kidney [not detected (ND)=0.132 μg/g and ND=0.183 μg/g, respectively]. The hepatic concentrations of Zn and Cu were high in young animals. In penguins, a positive correlation was found between the Zn and Cd concentrations in the liver and kidney and between the Cu and Cd concentrations in the liver. Individual variation was large in Fe concentration (48–3746 μg/g in the liver and 51–980 μg/g in the kidney).  相似文献   

15.
Microcystins are highly toxic cyanotoxins responsible for plant, animal and human poisoning. Exposure to microcystins, mainly through drinkable water and contaminated food, is a current world health concern. Although it is quite challenging, the synthesis of these potent cyanotoxins, analogs and derivatives helps to evaluate their toxicological properties and to elucidate their binding mechanisms to their main targets Protein Phosphatase-1 (PP1) and -2A (PP2A). This review focuses on synthetic approaches to prepare microcystins and analogs and compiles structure–activity relationship (SAR) studies that describe the unique features of microcystins that make them so potent.  相似文献   

16.
淡水鱼类可溶性谷胱甘肽S-转移酶(sGST)在微囊藻毒素去毒代谢过程中具有独特 的关键作用,因而也称为微囊藻毒素去毒酶. 从淡水食毒藻鱼类鲢鱼(Hypophthalmichthys molitrix)肝脏通过简并引物克隆微囊藻毒素去毒酶基因cDNA核心序列,应用5′RACE和3′RACE技术分别扩增该序列的5′末端和3′末端序列,最后通过序列拼接获得鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全序列. 序列分析结果表明,鲢鱼肝脏微囊藻毒素去毒酶基因cDNA全长920 bp,其中5′-UTR长74 bp,3′-UTR长174 bp,编码区长672 bp,编码223个氨基酸. 应用基因组步行法,在鲢鱼克隆得到淡水鱼类微囊藻毒素去毒酶基因5′侧翼区878 bp序列. 与哺乳动物及海水鱼sGST基因不同,鲢鱼微囊藻毒素去毒酶基因的5′侧翼区,发现存在多个脂多糖反应元件(LPSRE),表明来源于毒藻的脂多糖可能对鲢鱼微囊藻毒素去毒酶基因表达有潜在调控作用.  相似文献   

17.
Toxoplasma gondii is a land-derived parasite that infects humans and marine mammals. Infections are a significant cause of mortality for endangered southern sea otters (Enhydra lutris nereis), but the transmission mechanism is poorly understood. Otter exposure to T. gondii has been linked to the consumption of marine turban snails in kelp (Macrocystis pyrifera) forests. It is unknown how turban snails acquire oocysts, as snails scrape food particles attached to surfaces, whereas T. gondii oocysts enter kelp beds as suspended particles via runoff. We hypothesized that waterborne T. gondii oocysts attach to kelp surfaces when encountering exopolymer substances (EPS) forming the sticky matrix of biofilms on kelp, and thus become available to snails. Results of a dietary composition analysis of field-collected snails and of kelp biofilm indicate that snails graze the dense kelp-biofilm assemblage composed of pennate diatoms and bacteria inserted within the EPS gel-like matrix. To test whether oocysts attach to kelp blades via EPS, we designed a laboratory experiment simulating the kelp forest canopy in tanks spiked with T. gondii surrogate microspheres and controlled for EPS and transparent exopolymer particles (TEP - the particulate form of EPS). On average, 19% and 31% of surrogates were detected attached to kelp surfaces covered with EPS in unfiltered and filtered seawater treatments, respectively. The presence of TEP in the seawater did not increase surrogate attachment. These findings support a novel transport mechanism of T. gondii oocysts: as oocysts enter the kelp forest canopy, a portion adheres to the sticky kelp biofilms. Snails grazing this biofilm encounter oocysts as ‘bycatch’ and thereby deliver the parasite to sea otters that prey upon snails. This novel mechanism can have health implications beyond T. gondii and otters, as a similar route of pathogen transmission may be implicated with other waterborne pathogens to marine wildlife and humans consuming biofilm-feeding invertebrates.  相似文献   

18.
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The wild-type strain was found to be poisonous to D. galeata, whereas the mcy mutant did not have any lethal effect on the animals. Both variants of PCC7806 were able to reduce the Daphnia ingestion rate. Our results suggest that microcystins are the most likely cause of the daphnid poisoning observed when wild-type strain PCC7806 is fed to the animals, but these toxins are not responsible for inhibition of the ingestion process.  相似文献   

19.
Toxoplasma gondii is associated with morbidity and mortality in a variety of marine mammals, including fatal meningoencephalitis in the southern sea otter (Enhydra lutris nereis). The source(s) of T. gondii infection and routes of transmission in the marine environment are unknown. We hypothesise that filter-feeding marine bivalve shellfish serve as paratenic hosts by assimilation and concentration of infective T. gondii oocysts and their subsequent predation by southern sea otters is a source of infection for these animals. We developed a TaqMan PCR assay for detection of T. gondii ssrRNA and evaluated its usefulness for the detection of T. gondii in experimentally exposed mussels (Mytilus galloprovincialis) under laboratory conditions. Toxoplasma gondii-specific ssrRNA was detected in mussels as long as 21 days post-exposure to T. gondii oocysts. Parasite ssrRNA was most often detected in digestive gland homogenate (31 of 35, i.e. 89%) compared with haemolymph or gill homogenates. Parasite infectivity was confirmed using a mouse bioassay. Infections were detected in mice inoculated with any one of the mussel sample preparations (haemolymph, gill, or digestive gland), but only digestive gland samples remained bioassay-positive for at least 3 days post-exposure. For each time point, the total proportion of mice inoculated with each of the different tissues from T. gondii-exposed mussels was similar to the proportion of exposed mussels from the same treatment groups that were positive via TaqMan PCR. The TaqMan PCR assay described here is now being tested in field sampling of free-living invertebrate prey species from high-risk coastal locations where T. gondii infections are prevalent in southern sea otters.  相似文献   

20.
A large nation-wide survey of cyanotoxins (1161 lakes) in the United States (U.S.) was conducted during the EPA National Lakes Assessment 2007. Cyanotoxin data were compared with cyanobacteria abundance- and chlorophyll-based World Health Organization (WHO) thresholds and mouse toxicity data to evaluate potential recreational risks. Cylindrospermopsins, microcystins, and saxitoxins were detected (ELISA) in 4.0, 32, and 7.7% of samples with mean concentrations of 0.56, 3.0, and 0.061 μg/L, respectively (detections only). Co-occurrence of the three cyanotoxin classes was rare (0.32%) when at least one toxin was detected. Cyanobacteria were present and dominant in 98 and 76% of samples, respectively. Potential anatoxin-, cylindrospermopsin-, microcystin-, and saxitoxin-producing cyanobacteria occurred in 81, 67, 95, and 79% of samples, respectively. Anatoxin-a and nodularin-R were detected (LC/MS/MS) in 15 and 3.7% samples (n = 27). The WHO moderate and high risk thresholds for microcystins, cyanobacteria abundance, and total chlorophyll were exceeded in 1.1, 27, and 44% of samples, respectively. Complete agreement by all three WHO microcystin metrics occurred in 27% of samples. This suggests that WHO microcystin metrics based on total chlorophyll and cyanobacterial abundance can overestimate microcystin risk when compared to WHO microcystin thresholds. The lack of parity among the WHO thresholds was expected since chlorophyll is common amongst all phytoplankton and not all cyanobacteria produce microcystins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号