首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The knowledge of three-dimensional structures at atomic resolution of membrane transport proteins has improved considerably our understanding of their physiological roles and pathological implications. However, most structural biology techniques require an optimal candidate within a protein family for structural determination with (a) reasonable production in heterologous hosts and (b) good stability in detergent micelles. SteT, the Bacillus subtilis l-serine/l-threonine exchanger is the best-known prokaryotic paradigm of the mammalian l–amino acid transporter (LAT) family. Unfortunately, SteT’s lousy stability after extracting from the membrane prevents its structural characterization. Here, we have used an approach based on random mutagenesis to engineer stability in SteT. Using a split GFP complementation assay as reporter of protein expression and membrane insertion, we created a library of 70 SteT mutants each containing random replacements of one or two residues situated in the transmembrane domains. Analysis of expression and monodispersity in detergent of this library permitted the identification of evolved versions of SteT with a significant increase in both expression yield and stability in detergent with respect to wild type. In addition, these experiments revealed a correlation between the yield of expression and the stability in detergent micelles. Finally, and based on protein delipidation and relipidation assays together with transport experiments, possible mechanisms of SteT stabilization are discussed. Besides optimizing a member of the LAT family for structural determination, our work proposes a new approach that can be used to optimize any membrane protein of interest.  相似文献   

2.
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.The amino acid/polyamine/organocation (APC)2 superfamily comprises about 250 members that occur in all phyla from prokaryotes to higher eukaryotes. These membrane proteins function as solute/cation symporters or solute/solute antiporters (1). One APC subfamily is established by l-amino acid transporters (LATs), which correspond to the light subunits of eukaryotic heteromeric amino acid transporters (2, 3). Heteromeric amino acid transporters are composed of a light subunit that provides transport activity and a disulfide-linked heavy subunit that shows responsibility for plasma membrane targeting. Genetic defects in light and heavy subunits cause a number of inherited human diseases. Mutations in the light as well as the heavy subunit of system b0,+ lead to cystinuria (4, 5), whereas mutations in the light subunit y+LAT1 cause lysinuric protein intolerance (6, 7). Another light subunit, xCT that mediates cysteine uptake and glutamate efflux (8, 9), is involved in vivo in cocaine relapse (10) and maintenance of the plasma redox balance (11). LAT1, the light subunit of system L, is overexpressed in certain primary human tumors. It transports essential neutral amino acids with long, branched, or aromatic side chains required by tumor cells to support their unabated growth (12). Therefore, amino acid transporters like LAT1 are attractive anticancer drug targets.So far a high resolution structure of a eukaryotic LAT family member is not available. However, studies on xCT revealed a membrane topology of 12 transmembrane helices (TMHs) with cytosolic N and C termini and a re-entrant loop structure between TMHs II and III (13). The identified first prokaryotic member of the LAT family, SteT from Bacillus subtilis, is a serine/threonine antiporter, which shows high sequence identity (∼30%) to the light subunits of eukaryotic heteromeric amino acid transporters. Moreover SteT exhibits a similar putative membrane topology and sequential mode of obligate exchange (14). Thus, SteT is an excellent model for studying the structure-function relationship of LAT family members.According to current models, transport proteins undergo functionally related conformational changes. Transporters alternate between two conformations to expose their binding sites to the cytoplasmic and extracellular side (1522). However, prior to conformational changes substrates have to be recognized and bound. If substrates are amino acids, three main features can be used for specific selection and binding: (i) the negatively charged α-carboxyl group, (ii) the positively charged α-amino group, and (iii) the electrostatic, hydrophobic, or spatial properties of the side chain (2224). α-Carboxyl and α- amino groups of l-amino acids possess similar structural and chemical characteristics (except for proline); however, their side chains differ in shape, size, and electrostatic properties. Combinations of these features are assumed to establish different interactions within the side chain binding pocket, which determines the substrate specificity of the transporter. The two main substrates of SteT, l-serine and l-threonine, differ by only one methylene group in their side chain; thus they have similar properties. Additionally SteT transports aromatic l-amino acids (Trp, Tyr, and Phe) albeit less efficiently (14).Since its invention, the atomic force microscope (AFM) (25) has evolved from a surface imaging device to a versatile tool for studying interactions of manifold biological systems (2631). Introduced to characterize interactions between receptor-ligand complexes (32, 33) and complementary DNA strands (34), AFM-based single molecule force spectroscopy (SMFS) has been exploited to explore antibody-antigen recognition (35) and unfolding and refolding of soluble proteins (29, 36) and to probe the adhesion of living cells at molecular resolution (37). Applied to membrane proteins, SMFS uses the AFM stylus to exert a mechanical pulling force to the terminal end of a protein that is embedded and anchored by the lipid membrane (see Fig. 1A) (38). Sufficiently high stretching forces initiate sequential unfolding of the membrane protein with each step indicating the unfolding of a structural segment (39). Recording the applied force over pulling distance results in a force-distance (F-D) curve in which individual force peaks represent the rupture of intra- and intermolecular interactions. The height of a force peak measures the strength of an interaction with piconewton accuracy, and the pulling distance, at which the force peak occurs, allows the interaction within the membrane protein structure to be located (38).Open in a separate windowFIGURE 1.SMFS of SteT. A, pushing the AFM stylus onto the proteoliposomes promotes contacting single transporters to the stylus. This molecular link allows exertion of a mechanical pulling force that initiates stepwise unfolding of SteT. During the experiments, sample and cantilever are immersed in buffer solution. B, F-D curves recorded while unfolding single substrate-free SteT molecules. C, superimpositions of F-D curves recorded while unfolding SteT in buffer lacking any substrate (top) and supplemented with 5 mm l-serine (middle) or 5 mm l-threonine (bottom). Superimpositions are represented as density plots, each calculated from 60 F-D curves. Gray lines represent WLC curves with a persistence length of 0.4 nm and contour length (in amino acids) as indicated by the numbers next to the lines. The contour lengths were obtained from the Gaussian fits shown in D. F-D curves were obtained at room temperature at a pulling velocity of 654 nm/s in buffer solution (150 mm NaCl, 20 mm Tris-HCl, pH 8.0, substrate as indicated). D, frequency of force peaks detected at different positions of the stretched polypeptide. Every force peak detected in individual F-D curves (B) was fitted using the WLC model with the contour length of the stretched polypeptide as the only fitting parameter. The frequency at which the force peaks appeared is plotted in the histogram: substrate-free, n = 132; 5 mm l-serine, n = 128; and 5 mm l-threonine, n = 127. The bin size of the histograms is 3 aa and reflects the accuracy of fitting the WLC model (55) to individual force peaks. Error bars representing the S.E. were calculated using S.E. = (p(1 − p)/n)0.5 where p is the probability and n is the total number of F-D curves. The width of each force peak distribution is given by the experimental noise, conformational variability of the structural segments, and fitting accuracy of the force peaks (53, 99102). The gray solid curve represents the sum of seven Gaussian fits to the seven main peaks from the histograms and superimpositions (C). Numbers next to peaks denote peak positions (measured in amino acids) obtained from Gaussian fits.Besides quantification and localization of molecular interactions in membrane proteins, SMFS provides information about their energy landscape. For that purpose, the interactions of membrane proteins are probed over a range of different time scales by dynamic force spectroscopy (DFS). Bell (40) and Evans and co-worker (41, 42) provided the most commonly used theoretical framework to analyze DFS data. Their model describes the deformation of the energy landscape by an externally applied force, F. Such force-induced deformations reduce the energy barriers that separate bound and unbound states (see Fig. 2). Consequently transition rates over such energy barriers are force-dependent. Probing the interactions at different pulling velocities and thus at different force loading rates, rf, leads to a so-called dynamic force spectrum in which the most probable force, F*, of rupture is plotted versus the logarithm of rf. In these dynamic force spectra, each linear regime represents an energy barrier. Energy barriers located closer to the bound state are probed at higher pulling velocities because the energy barriers located further from the bound state are suppressed by increasingly applied forces (see Fig. 2) (41). The slope of each linear regime measures the distance from the ground state to the transition state, whereas extrapolation of a linear regime to zero force provides the rate constant of crossing the corresponding barrier in the absence of any load. These two parameters allow an estimate of the rigidity of the probed structure (43, 44).Open in a separate windowFIGURE 2.Energy landscape tilted by force. Schematic representation of the free energy profile along the reaction coordinate and applied force according to the Bell-Evans theory (4042). The potential along the reaction coordinate (vector of force) in the absence of force (black curve) exhibits two energy barriers separating the folded from the unfolded state. Application of an external force, F, changes the thermal likelihood of reaching the top of the energy barrier(s). Although for a sharp barrier the position, xu, of the energy barrier relative to the folded state is not changed, the thermally averaged projection of the energy profile along the pulling direction is tilted by the mechanical energy (−F·cos θ)x (long-dashed line). This tilt decreases the energy barriers (short-dashed curve). Consequently the relevant energy barrier that has to be overcome is the outermost barrier. At slow pulling velocities, the thermal contribution is higher, and therefore, the mechanical energy required to overcome the barrier is smaller. With increasing pulling velocities, the barriers are further lowered. At some velocity, the height of the outer barrier will be lower than that of the inner barrier (short-dashed curve), which then becomes the relevant energy barrier to be overcome. Each energy barrier manifests as a linear regime in dynamic force spectra (Fig. 3).In this study, we applied SMFS to characterize molecular interactions that stabilize SteT in the absence and in the presence of its substrates, l-serine and l-threonine. We used DFS to characterize how substrate binding changes the energy landscape and the mechanical properties of the antiporter. It was observed that the structural regions stabilized within SteT did not depend on substrate binding. However, substrate binding dynamically changed the energy landscape of these structures. In the absence of substrate all structural regions within SteT were stabilized by a narrow inner energy barrier and co-stabilized by a second outer energy barrier. The unique properties of these energy barriers restricted the conformation of SteT thereby trapping the antiporter in a kinetically instable and mechanically rigid conformation. In contrast, substrate binding sets SteT into a different energy minimum that significantly increased the kinetic stability and conformational flexibility of the antiporter.  相似文献   

3.
OxlT, the oxalate:formate antiporter of Oxalobacter formigenes, has a lone charged residue, lysine 355 (Lys-355), at the center of transmembrane helix 11 (TM11). Because Lys-355 is the only charged residue in the hydrophobic sector, we tested the hypothesis that lysine 355 contributes to the binding site for the anionic substrate, oxalate. This idea was supported by mutational analysis, which showed that of five variants studied (Lys-355 --> Cys, Gly, Gln, Arg, or Thr), residual function was found for only the K355R derivative, in which catalytic efficiency had fallen 2,600-fold. Further insight came from a study of TM11 single-cysteine mutants, using the impermeant, thiol-specific reagents, carboxyethyl methanethiosulfonate and ethyltrimethylammonium methanethiosulfonate. Of the five reactive positions identified in TM11, four were at the cytoplasmic or periplasmic ends of TM11 (S344C and A345C, and G366C and A370C, respectively), whereas the fifth was at the center of the helix (S359C). Added study with carboxyethyl methanethiosulfonate and ethylsulfonate methylthiosulfonate showed that the attack on S359C could be blocked by the presence of the substrate, oxalate, and that protection could be predicted quantitatively by a kinetic model in which S359C is accessible only in the unliganded form of OxlT. Parallel study showed that the proteoliposomes used in such work contained OxlT of right side-out and inside-out orientations in about equal amounts. Accordingly, full inhibition of S359C by the impermeable methanethiosulfonate-linked probes must reflect an approach from both the cytosolic and periplasmic surfaces of the protein. This, coupled with the finding of substrate protection, leads us to conclude that S359C lies on the translocation pathway through OxlT. Since position 359 and 355 lie on the same helical face, we suggest that Lys-355 also lies on the translocation pathway, consistent with the idea that the essential nature of Lys-355 reflects its role in binding the anionic substrate, oxalate.  相似文献   

4.
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.  相似文献   

5.
We previously identified Asn331 in transmembrane segment 7 (TM7) as a key residue determining substrate affinity in Hxt2, a moderately high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by yeast glucose transporters, we have now studied Hxt7, whose affinity for glucose is the highest among the major hexose transporters. The functional role of Asp340 in Hxt7, the residue corresponding to Asn331 of Hxt2, was examined by replacing it with each of the other 19 amino acids. Such replacement of Asp340 generated transporters with various affinities for glucose, with the affinity of the Cys340 mutant surpassing that of the wild-type Hxt7. To examine the structural role of Asp340 in the substrate translocation pathway, we performed cysteine-scanning mutagenesis of the 21 residues in TM7 of a functional Cys-less Hxt7 mutant in conjunction with exposure to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). The transport activity of the D340C mutant of Cys-less Hxt7, in which Asp340 is replaced with Cys, was completely inhibited by pCMBS, indicating that Asp340 is located in a water-accessible position. This D340C mutant showed a sensitivity to pCMBS that was ∼70 times that of the wild-type Hxt7, and it was protected from pCMBS inhibition by the substrates d-glucose and 2-deoxy-d-glucose but not by l-glucose. These results indicate that Asp340 is situated at or close to a substrate recognition site and is a key residue determining high-affinity glucose transport by Hxt7, supporting the notion that yeast glucose transporters share a common mechanism for substrate recognition.  相似文献   

6.
Filamentous tau pathology is central to a large number of dementing disorders, including Alzheimer's disease in which polymerized tau is hyperphosphorylated. Previous studies on heparin-dependent tau polymerization, using recombinant tau isoforms lacking Cys-291, suggest that tau dimerization via Cys-322 is critical for initiation of assembly of soluble tau into filaments. We report heparin-dependent in vitro polymerization of human recombinant tau (1-383 isoform), containing both Cys-291 and Cys-322, into paired helical filaments as characterized by electron microscopy. Tau polymerization, under physiological tau concentrations in the presence of dithiothreitol (DTT), was followed by a Thioflavine S fluorescence assay. To understand the molecular basis for heparin-induced tau polymerization, we expressed and purified C291A, C322A, and C291A/C322A tau mutants. The DTT requirement for tau polymerization was abolished using either the C291A or C322A tau mutant and polymerization was not observed with the C291A/C322A tau double mutant. Analysis by sodium dodecyl sulfate gel electrophoresis showed that, unlike wild type tau, a significant amount of the C291A mutant and the C322A mutant is present as a disulfide bonded dimer. Taken together these results suggest that, in isoforms containing both Cys-291 and Cys-322, a dimeric tau with an intermolecular disulfide bond through either Cys-291 or Cys-322 is presumably acting as a seed for initiation of tau polymerization.  相似文献   

7.
In most cells, cationic amino acids such as l-arginine, l-lysine, and l-ornithine are transported by cationic (CAT) and y+L (y+LAT) amino acid transporters. In human erythrocytes, the cysteine-modifying agent N-ethylmaleimide (NEM) has been shown to inhibit system y+ (most likely CAT-1), but not system y+L (Devés, R., Angelo, S., and Chávez, P. (1993) J. Physiol. 468, 753–766). We thus wondered if sensitivity to NEM distinguishes generally all CAT and y+LAT isoforms. Transport assays in Xenopus laevis oocytes established that indeed all human CATs (including the low affinity hCAT-2A), but neither y+LAT isoform, are inhibited by NEM. hCAT-2A inhibition was not due to reduced transporter expression in the plasma membrane, indicating that NEM reduces the intrinsic transporter activity. Individual mutation of each of the seven cysteine residues conserved in all CAT isoforms did not lead to NEM insensitivity of hCAT-2A. However, a cysteine-less mutant was no longer inhibited by NEM, suggesting that inhibition occurs through modification of more than one cysteine in hCAT-2A. Indeed, also the double mutant C33A/C273A was insensitive to NEM inhibition, whereas reintroduction of a cysteine at either position 33 or 273 in the cysteine-less mutant led to NEM sensitivity. We thus identified Cys-33 and Cys-273 in hCAT-2A as the targets of NEM inhibition. In addition, all proteins with Cys-33 mutations showed a pronounced reduction in transport activity, suggesting that, surprisingly, this residue, located in the cytoplasmic N terminus, is important for transporter function.  相似文献   

8.
The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μm) and an ATPase activity with a Km of 0.99 mm. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6.  相似文献   

9.
We examined the relationship between transmembrane domain (TM) 10 and TM11/12 in NKCC1, testing homology models based on the structure of AdiC in the same transporter superfamily. We hypothesized that introduced cysteine pairs would be close enough for disulfide formation and would alter transport function: indeed, evidence for cross-link formation with low micromolar concentrations of copper phenanthroline or iodine was found in 3 of 8 initially tested pairs and in 1 of 26 additionally tested pairs. Inhibition of transport was observed with copper phenanthroline and iodine treatment of P676C/A734C and I677C/A734C, consistent with the proximity of these residues and with movement of TM10 during the occlusion step of ion transport. We also found Cu2+ inhibition of the single-cysteine mutant A675C, suggesting that this residue and Met382 of TM3 are involved in a Cu2+-binding site. Surprisingly, cross-linking of P676C/I730C was found to prevent rapid deactivation of the transporter while not affecting the dephosphorylation rate, thus uncoupling the phosphorylation and activation steps. Consistent with this, (a) cross-linking of P676C/I730C was dependent on activation state, and (b) mutants lacking the phosphoregulatory domain could still be activated by cross-linking. These results suggest a model of NKCC activation that involves movement of TM12 relative to TM10, which is likely tied to movement of the large C terminus, a process somehow triggered by phosphorylation of the regulatory domain in the N terminus.  相似文献   

10.
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.  相似文献   

11.
The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.  相似文献   

12.
Members of group I KT-HAK-KUP transporters play an important role in K+ acquisition by plant roots, a process that is strongly affected by salt stress. A PCR-based random mutagenesis approach on HvHAK1 allowed identification of V366I and R591C substitutions, which confer enhanced K+-capture, and improved NaCl, LiCl and NH4Cl tolerance, to yeast cells. Improved K+-capture was linked to an enhanced Vmax. Results reveal an intrinsic protective effect of K+, and assign an important role to the 8th transmembrane domain, as well as the C-terminus, in determining the maximum capacity for the transport of K+ in KT-HAK-KUP transporters.  相似文献   

13.
In the yeast Saccharomyces cerevisiae, microbial fuels and chemicals production on lignocellulosic hydrolysates is constrained by poor sugar transport. For biotechnological applications, it is desirable to source transporters with novel or enhanced function from nonconventional organisms in complement to engineering known transporters. Here, we identified and functionally screened genes from three strains of early-branching anaerobic fungi (Neocallimastigomycota) that encode sugar transporters from the recently discovered Sugars Will Eventually be Exported Transporter (SWEET) superfamily in Saccharomyces cerevisiae. A novel fungal SWEET, NcSWEET1, was identified that localized to the plasma membrane and complemented growth in a hexose transporter-deficient yeast strain. Single cross-over chimeras were constructed from a leading NcSWEET1 expression-enabling domain paired with all other candidate SWEETs to broadly scan the sequence and functional space for enhanced variants. This led to the identification of a chimera, NcSW1/PfSW2:TM5-7, that enhanced the growth rate significantly on glucose, fructose, and mannose. Additional chimeras with varied cross-over junctions identified residues in TM1 that affect substrate selectivity. Furthermore, we demonstrate that NcSWEET1 and the enhanced NcSW1/PfSW2:TM5-7 variant facilitated novel co-consumption of glucose and xylose in S. cerevisiae. NcSWEET1 utilized 40.1% of both sugars, exceeding the 17.3% utilization demonstrated by the control HXT7(F79S) strain. Our results suggest that SWEETs from anaerobic fungi are beneficial tools for enhancing glucose and xylose co-utilization and offers a promising step towards biotechnological application of SWEETs in S. cerevisiae.  相似文献   

14.
《Journal of molecular biology》2019,431(11):2163-2179
QacA is a drug:H+ antiporter with 14 transmembrane helices that confers antibacterial resistance to methicillin-resistant Staphylococcus aureus strains, with homologs in other pathogenic organisms. It is a highly promiscuous antiporter, capable of H+-driven efflux of a wide array of cationic antibacterial compounds and dyes. Our study, using a homology model of QacA, reveals a group of six protonatable residues in its vestibule. Systematic mutagenesis resulted in the identification of D34 (TM1), and a cluster of acidic residues in TM13 including E407 and D411 and D323 in TM10, as being crucial for substrate recognition and transport of monovalent and divalent cationic antibacterial compounds. The transport and binding properties of QacA and its mutants were explored using whole cells, inside-out vesicles, substrate-induced H+ release and microscale thermophoresis-based assays. The activity of purified QacA was also observed using proteoliposome-based substrate-induced H+ transport assay. Our results identify two sites, D34 and D411 as vital players in substrate recognition, while E407 facilitates substrate efflux as a protonation site. We also observe that E407 plays an additional role as a substrate recognition site for the transport of dequalinium, a divalent quaternary ammonium compound. These observations rationalize the promiscuity of QacA for diverse substrates. The study unravels the role of acidic residues in QacA with implications for substrate recognition, promiscuity and processive transport in multidrug efflux transporters, related to QacA.  相似文献   

15.
Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues 90GLALIVAGV98); and (ii) a peptide comprised of the full TM4(85–105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88–100), and then “staple” this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-88VVGLXLIZXGVVV100-KKK-NH2 (X = 2-(4′-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn95 peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88–100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.  相似文献   

16.
Sulfate is an essential nutrient with pronounced regulatory effects on cellular metabolism and proliferation. Little is known, however, about how sulfate is sensed by cells. Sul1 and Sul2 are sulfate transporters in the yeast Saccharomyces cerevisiae, strongly induced upon sulfur starvation and endocytosed upon the addition of sulfate. We reveal Sul1,2-dependent activation of PKA targets upon sulfate-induced exit from growth arrest after sulfur starvation. We provide two major arguments in favor of Sul1 and Sul2 acting as transceptors for signaling to PKA. First, the sulfate analogue, d-glucosamine 2-sulfate, acted as a non-transported agonist of signaling by Sul1 and Sul2. Second, mutagenesis to Gln of putative H+-binding residues, Glu-427 in Sul1 or Glu-443 in Sul2, abolished transport without affecting signaling. Hence, Sul1,2 can function as pure sulfate sensors. Sul1E427Q and Sul2E443Q are also deficient in sulfate-induced endocytosis, which can therefore be uncoupled from signaling. Overall, our data suggest that transceptors can undergo independent conformational changes, each responsible for triggering different downstream processes. The Sul1 and Sul2 transceptors are the first identified plasma membrane sensors for extracellular sulfate. High affinity transporters induced upon starvation for their substrate may generally act as transceptors during exit from starvation.  相似文献   

17.
Zhang X  Qu S 《PloS one》2011,6(6):e21288

Background

GLT-1 is a glial glutamate transporter which maintains low synaptic concentrations of the excitatory neurotransmitter enabling efficient synaptic transmission. Based on the crystal structure of the bacterial homologue GltPh, it has been proposed that the reentrant loop HP2, which connects transmembrane domains (TM) 7 and 8, moves to open and close access to the binding pocket from the extracellular medium. However the conformation change between TM5 and TM8 during the transport cycle is not clear yet. We used paired cysteine mutagenesis in conjunction with treatments with Copper(II)(1,10-Phenanthroline)3 (CuPh), to verify the predicted proximity of residues located at these structural elements of GLT-1.

Methodology/Principal Findings

To assess the proximity of transmembrane domain (TM) 5 relative to TM8 during transport by the glial glutamate transporter GLT-1/EAAT2, cysteine pairs were introduced at the extracellular ends of these structural elements. A complete inhibition of transport by Copper(II)(1,10-Phenanthroline)3 is observed in the double mutants I295C/I463C and G297C/I463C, but not in the corresponding single mutants. Glutamate and potassium, both expected to increase the proportion of inward-facing transporters, significantly protected against the inhibition of transport activity of I295C/I463C and G297C/I463C by CuPh. Transport by the double mutants I295C/I463C and G297C/I463C also was inhibited by Cd2+.

Conclusions/Significance

Our results suggest that TM5 (Ile-295, Gly-297) is in close proximity to TM8 (Ile-463) in the mammalian transporter, and that the spatial relationship between these domains is altered during the transport cycle.  相似文献   

18.
The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of d- and l-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by l-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well.  相似文献   

19.
The hyperthermophilic bacterium Thermotoga maritima has shared many genes with archaea through horizontal gene transfer. Several of these encode putative oligopeptide ATP binding cassette (ABC) transporters. We sought to test the hypothesis that these transporters actually transport sugars by measuring the substrate affinities of their encoded substrate-binding proteins (SBPs). This information will increase our understanding of the selective pressures that allowed this organism to retain these archaeal homologs. By measuring changes in intrinsic fluorescence of these SBPs in response to exposure to various sugars, we found that five of the eight proteins examined bind to sugars. We could not identify the ligands of the SBPs TM0460, TM1150, and TM1199. The ligands for the archaeal SBPs are TM0031 (BglE), the β-glucosides cellobiose and laminaribiose; TM0071 (XloE), xylobiose and xylotriose; TM0300 (GloE), large glucose oligosaccharides represented by xyloglucans; TM1223 (ManE), β-1,4-mannobiose; and TM1226 (ManD), β-1,4-mannobiose, β-1,4-mannotriose, β-1,4-mannotetraose, β-1,4-galactosyl mannobiose, and cellobiose. For comparison, seven bacterial putative sugar-binding proteins were examined and ligands for three (TM0595, TM0810, and TM1855) were not identified. The ligands for these bacterial SBPs are TM0114 (XylE), xylose; TM0418 (InoE), myo-inositol; TM0432 (AguE), α-1,4-digalactouronic acid; and TM0958 (RbsB), ribose. We found that T. maritima does not grow on several complex polypeptide mixtures as sole sources of carbon and nitrogen, so it is unlikely that these archaeal ABC transporters are used primarily for oligopeptide transport. Since these SBPs bind oligosaccharides with micromolar to nanomolar affinities, we propose that they are used primarily for oligosaccharide transport.  相似文献   

20.
Sugars, the major energy source for many organisms, must be transported across biological membranes. Glucose is the most abundant sugar in human plasma and in many other biological systems and has been the primary focus of sugar transporter studies in eukaryotes. We have previously cloned and characterized a family of glucose transporter genes from the protozoan parasite Leishmania. These transporters, called LmGT1, LmGT2, and LmGT3, are homologous to the well characterized glucose transporter (GLUT) family of mammalian glucose transporters. We have demonstrated that LmGT proteins are important for parasite viability. Here we show that one of these transporters, LmGT2, is a more effective carrier of the pentose sugar d-ribose than LmGT3, which has a 6-fold lower relative specificity (Vmax/Km) for ribose. A pair of threonine residues, located in the putative extracellular loops joining transmembrane helices 3 to 4 and 7 to 8, define a filter that limits ribose approaching the exofacial substrate binding pocket in LmGT3. When these threonines are substituted by alanine residues, as found in LmGT2, the LmGT3 permease acquires ribose permease activity that is similar to that of LmGT2. The location of these residues in hydrophilic loops supports recent suggestions that substrate recognition is separated from substrate binding and translocation in this important group of transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号