首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
Distribution and activity of acetylcholinesterase (AChE) in the neurons of the central vagal nuclei at the level of the medulla oblongata were studied in intact and alloxan-diabetic adult male rats by Gomori's histochemical method. Peculiarities of intracellular distribution of the enzyme in the Nucl. dorsalis n. vagi (ND) and Nucl. ambiguus n. vagi (NA) of intact animals were demonstrated. Changes in the ratio of cholinergic neurons with moderate and strongly-positive AChE staining reactions were revealed in the ND of alloxan-diabetic rats. The dynamics of the changes attested to increased AChE activity of these neurons in response to insulin deficiency. The data obtained are additional evidence for the responsiveness of ND neurons to insulin deficiency, which was demonstrated earlier in alloxan-diabetic rats by karyometry (Akmayev and Rabkina, 1976 b). It is suggested that changes in the plasma glucose or insulin levels may be the stimulus that influences the activity of the ND cholinergic neurons. By means of this mechanism the central vagal nucleus at the medulla oblongata level may be implicated in the feedback control of insulin secretion.  相似文献   

2.
Distribution and activity of acetylcholine esterase (AChE) in the central vagal nuclei (Nucl. dorsalis and Nucl. ambiguus) in male intact rats and in rats with experimental alloxan diabetes were investigated. In alloxan-diabetic rats there was noted an increase of the number of cells with a high AChE activity in the Nucl. dorsalis by 6%. These data suggest the participation of the vagal dorsal nucleus in the control of the endocrine function of the pancreas.  相似文献   

3.
General morphology of chromatin, the number of chromosomes and chromocenters in normal condition and at the increase of bivalent cation (Ca2+, Mg2+) concentration were studied with the purpose to reveal mechanisms of polyploidization of neuron nuclei in the snail Succinea lauta (Gastropoda, Pulmonata). The morphology of nuclei was studied on squashed preparations. Normal diploid mitoses are described in the cerebral ganglia. A possibility is supposed that part of neurons or neuroblasts in the central nervous system (CNS) of succineid snail may divide mitotically. It has been shown that the basic mechanism of neuron postnatal growth is endomitotic polyploidization of nuclei. The transition from ordinary mitosis to polyploid cycles occurs via restitutional (polyploidizing) mitosis (4c2n-->4c4n). The next endocycles are carried out by means of classic endomitosis up to reaching the highest ploidy levels--4096n--16,384n. The study of general morphology of chromatin and chromocenters at normal condition and at artificial compactization enabled us to exclude any probability of polyteny in the CNS of lauta.  相似文献   

4.
目的:本研究主要是探索高浓度的Shh对后脑5-HT神经元数量的影响。方法:通过免疫荧光和原位杂交手段检测Shh在脑干的表达情况。离体培养5-HT神经元,用不同浓度Shh蛋白处理,观察5-HT神经元的数量变化以及对轴突的影响。通过胚胎宫内电转,检测Shh过表达后脑5-HT神经元的数量变化。结果:Shh在脑干5-HT神经元分布区域内表达。离体培养的5-HT神经元,250 ng/m L的Shh蛋白处理后神经元数量为41.25±0.52(n=4,P=0.0218),与对照组35±1.21(n=4)相比,神经元数量上调。相反,1250 ng/m L的Shh蛋白处理后神经元数量为7.5±0.43(n=4,P0.0001),与对照组相比,神经元数量极显著下降。250 ng/m L的Shh蛋白处理后5-HT神经元轴突长度为1.08±0.05(n=4,P=0.7555),与对照组1±0.01(n=4)相比,轴突长度没有显著性差异。然而1250 ng/m L的Shh蛋白处理后5-HT神经元轴突长度为0.44±0.03(n=4,P=0.0014),与对照组相比,轴突长度极显著缩短。胚胎宫内电转p IRES-Shh-EGFP和p IRES-EGFP,观察到Shh过表达缝核上行5-HT神经元数量为147±54.2(n=4,P=0.0053),相较于对照组459±49.0(n=4),神经元数量极显著下降。同样地,Shh过表达缝核下行5-HT神经元数量为187±18.4(n=4,P=0.0001),相较于对照组411±17.3(n=4),神经元数量也发生了极显著下降。结论:Shh过表达对5-HT神经元的发育有负向的调控作用,主要表现在引起后脑缝核5-HT神经元数量减少。  相似文献   

5.
Recently, physical exercise has been shown to significantly alter neurochemistry and neuronal function and to increase neurogenesis in discrete brain regions. Although we have documented that physical exercise leads to molecular changes in the posterior hypothalamic area (PHA), the impact on neuronal activity is unknown. The purpose of the present study was to determine whether neuronal activity in the PHA is altered by physical exercise. Spontaneously hypertensive rats (SHR) were allowed free access to running wheels for a period of 10 wk (exercised group) or no wheel access at all (nonexercised group). Single-unit extracellular recordings were made in anesthetized in vivo whole animal preparations or in vitro brain slice preparations. The spontaneous firing rates of PHA neurons in exercised SHR in vivo were significantly lower (8.5 +/- 1.6 Hz, n = 31 neurons) compared with that of nonexercised SHR in vivo (13.7 +/- 1.8 Hz, n = 38 neurons; P < 0.05). In addition, PHA neurons that possessed a cardiac-related rhythm in exercised SHR fired significantly lower (6.0 +/- 1.8 Hz, n = 11 neurons) compared with nonexercised SHR (12.1 +/- 2.4 Hz, n = 18 neurons; P < 0.05). Similarly, the spontaneous in vitro firing rates of PHA neurons from exercised SHR were significantly lower (3.5 +/- 0.3 Hz, n = 67 neurons) compared with those of nonexercised SHR (5.6 +/- 0.5 Hz, n = 58 neurons; P < 0.001). Both the in vivo and in vitro findings support the hypothesis that physical exercise can lower spontaneous activity of neurons in a cardiovascular regulatory region of the brain. Thus physical exercise may alter central neural control of cardiovascular function by inducing lasting changes in neuronal activity.  相似文献   

6.
Neuronal characteristics and location of the neurosecretory, magnocellular, fuchsin-paraldehyde-positive (FA+) system of the fowl are described at the light-microscopic level on serial semithin sections. Three nuclei make up this system, the nucleus supraopticus, n. magnocellularis interstitialis and n. paraventricularis. These nuclei display magnocellular neurons, not showing a parvocellular component. The neurons of the three nuclei showed a scattered pattern of distribution and a dense surrounding neuropil. Groups formed by magnocellular neurons were found in the three nuclei and groups formed by one magnocellular and a parvocellular neurons were only found in the n. magnocellularis interstitialis and in the n. paraventricularis. The presence of neurons in apposition to blood vessels was frequent in the magnocellular FA+ system of the domestic fowl.  相似文献   

7.
Identified neurons and glial cells in a parasympathetic ganglion were observed in situ with video-enhanced microscopy at intervals of up to 130 d in adult mice. Whereas the number and position of glial cells associated with particular neurons did not change over several hours, progressive differences were evident over intervals of weeks to months. These changes involved differences in the location of glial nuclei on the neuronal surface, differences in the apparent number of glial nuclei associated with each neuron, and often both. When we examined the arrangement of neurons and glial cells in the electron microscope, we also found that presynaptic nerve terminals are more prevalent in the vicinity of glial nuclei than elsewhere on the neuronal surface. The fact that glial nuclei are associated with preganglionic endings, together with the finding that the position and number of glial nuclei associated with identified neurons gradually changes, is in accord with the recent observation that synapses on these neurons are normally subject to ongoing rearrangement (Purves, D., J. T. Voyvodic, L. Magrassi, and H. Yawo. 1987. Science (Wash. DC). 238:1122-1126). By the same token, the present results suggest that glial cells are involved in synaptic remodeling.  相似文献   

8.
Nuclear volumes, nerve cell densities, numbers of neurons, and volumes of nerve cell perikarya of the thalamic ventrolateral complex (VL), a neural substrate for movement, were measured in specimens from two gibbons, one gorilla, one chimpanzee, and three humans, and the values were compared. The human VL had about one-and-a-half times as many neurons as did those of the great apes. The relative frequencies of the sizes of nerve cell perikarya differed slightly in the ventrolateral segment of VL; no differences were noted in the rest of VL. Compared with findings from other parts of the thalamus, the differences in the volumes of VL were greater than those found in the thalamic sensory nuclei, similar to those of rest of the thalamus, and less than those found in the whole brain. The increased number of neurons in human VL was similar to that of the somatosensory relay complex, but greater than those of the auditory and visual nuclei and less than those of the limbic and association nuclei. In human evolution, the numbers of neurons in the VL appeared to increase at a faster rate than did neurons of the pyramidal tract, whereas the motor cortex apparently increased at a rate greater than VL.  相似文献   

9.
In Xenopus laevis, the laryngeal motor nucleus (n. of cranial nerves IX-X) is part of a sexually differentiated, androgen sensitive neuromuscular system devoted to vocalization. Adult males have more n. IX-X neurons than females; however, during development of n. IX-X, the rate of neurogenesis does not appear to differ between the sexes. In this study, we explored the role of naturally occurring cell death in the development of this nucleus and asked whether cell death might be involved in establishing the sex difference in neuron number. Counts of n. IX-X neurons reveal that at tadpole stage 56, males and females have similar numbers of n. IX-X neurons, but by stage 64 male neuron numbers are greater. This sex difference arises owing to a greater net loss of neurons in females-males lose approximately 25% of their n. IX-X neurons between stages 56 and 64, while females lose approximately 47%. Sexual differentiation of n. IX-X neuron number coincides with a period of developmental cell death, as evidenced by terminal transferase-mediated dUTP nick-end labeling and the presence of pyknotic nuclei in n. IX-X. A role for gonadal hormones in controlling cell number was examined by treating tadpoles with exogenous androgen and determining the number of n. IX-X neurons at stage 64. Dihydrotestosterone (DHT) treatment from the beginning of the cell death period (stage 54) until stage 64 had no effect on the number of n. IX-X neurons in males but did significantly increase n. IX-X neuron number in females. This increase was sufficient to abolish the sex difference normally observed at stage 64. Although DHT induced increases in female neuron number, it did not induce increases in cell proliferation or addition of newly born neurons to n. IX-X. DHT may therefore have increased neuron number by protecting cells from death. We conclude that androgens can influence the survival of n. IX-X neurons during a period of naturally occurring cell death, and that this action of androgen is critical to the development of sex differences in n. IX-X neuron number.  相似文献   

10.
The morphometric development of the human cerebellar nuclei was examined in 9 fetuses (16-40 weeks of gestation; WG), an infant (2 months old) and 2 adults (16 and 63 years old). With the morphological observation of serial sections of the brain containing the cerebellar nuclei, the authors measured sections to get several morphometric parameters: the volume of nuclear column and number, packing density and cell body area of neurons. Each nucleus (dentate, emboliform, globose and fastigial nucleus) was recognized even at 16 WG. Nerve cells containing Nissl bodies were observed in all nuclei after 23 WG. Degenerative changes were detected in some neurons for every nucleus at 21 and 23 WG. Three stages were observed in the developmental course of nuclear volume and neuronal packing density: the primary or undifferentiated stage at 16 WG, the secondary stage with variability at 21-32 WG and the tertiary stage with monotonous increase (nuclear volume) or gradual decrease (neuronal packing density) after 35 WG. No significant correlation between neuronal number and gestational age was noticed for every nucleus. The analysis of cell body area (neuronal size) demonstrated that the dentate neurons developed after the intermediate or fastigial neurons. It is concluded that there is a critical period between slightly before 20 WG and slightly after 30 WG, matched with the secondary stage in the development of the cerebellar nuclei.  相似文献   

11.
A loss of about half of the trochlear motor neurons occurs during the course of normal development. The present investigation was undertaken to examine the role of afferent input in regulating the number of surviving or dying trochlear motor neurons. A majority of the afferent input to the trochlear nucleus comes from the vestibular nuclei of the hindbrain via the medial longitudinal fasciculus. Portions of the hindbrain were lesioned in duck embryos on embryonic day 3, considerably prior to the time motor neurons send their axons out and cell death begins. The effectiveness of hindbrain lesion was verified by electron microscopical examination of synapses. There was a significant decrease in the number of synapses on trochlear motor neurons following hindbrain lesion. Cell counts made after the period of cell death indicated a significant decrease in the final number of surviving trochlear motor neurons. Cell counts made prior to the onset of cell death indicated that there was a drastic reduction in the initial number of trochlear motor neurons produced in hindbrain lesion embryos. In spite of a significant reduction in the initial number of neurons, the percentage loss of neurons was about the same as during normal development. Since trochlear motor neurons are generated prior to the formation of afferent synapses on them, it is unlikely that the reduction in the number of motor neurons initially produced is due to reduced afferent synaptic input. Since the percentage of cell loss in hindbrain lesion and normal embryos is about the same, it seems that the magnitude of cell death is genetically programmed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Neuronal activity of n. AV (n = 75) and n. AD (n = 55) of the thalamus was recorded extracellularly in unanaesthetized chronic rabbits after complete transection of the mammillo -thalamic tract (MTT). Elimination of this powerful afferent system produced a surprisingly small effect upon spontaneous and evoked neuronal activity. All types of responses were preserved in both nuclei, though some increase of multimodal diffuse tonic responses and decrease of more specialized phasic and complex on-effects occurred in n. AV. In both nuclei short-latency responses (less than 14 ms) to auditory stimuli disappeared. The number of units with dynamic transformations of responses during repeated stimuli application (gradual emergence and shaping of responses, as well as their habituation) decreased 2-3-fold in both nuclei. The impulse activity travelling in MTT seems to be not critical for limbic nuclei sensory reactivity but significant for plasticity of the responses.  相似文献   

13.
The work studied vasopressinergic neurons of hypothalamic supraoptic and paravenricular nuclei of the wild type mice and the neuronal nitric oxide synthase (nNOS) gene knockouted mice at a decrease of the brain catecholamine (CA) level caused by administration of the blocker of activity of tyrosine hydroxylase alpha-methyl-paratyrosine (alpha-MPT) and at the CA level decrease on the background of functional activity of the vasopressinergic neurons caused by dehydration of animals. There were analyzed changes in the number of neurons in both magnocellular hypothalamic nuclei expressing proapoptotic proteins caspase-8 and caspase-9, p53, and antiapoptotic protein Bcl-2. The disturbance of the CA-ergic innervation was shown to be a strong damaging factor leading to apoptosis of neurons regardless of the presence of nNOS in the cells. However, at disturbance of the CA-ergic innervation due to the 5-day mouse dehydration, no death of neurons by apoptosis was revealed. Thus, it is possible that functional activation prevents the hypothalamic vasopressinergic neurons from death at a decrease of the CA level in brain. The main difference of the nNOS gene knockouts is the absence of activation of the Bcl-2 expression under all used actions. This confirms our suggestion about interaction of CA and NO in triggering of expression of the antiapoptotic protein Bcl-2.  相似文献   

14.
Evoked potentials were recorded in the system of raphe nuclei in experiments on unanesthetized, immobilized cats. Somatic stimulation proved to be the most effective of the different stimulations used (light flash, sound click, electrical stimulation of the skin of the limbs). Sound and light stimulation did not evoke pronounced responses, or the latter (to sound) were of a very low amplitude and irregular. In the second series of experiments on cats narcotized with nembutal (30–35 mg/kg) the spontaneous activity and activity evoked by somatic stimulation of single neurons of the caudal part of the raphe nuclei were studied. The overwhelming majority of neurons were characterized by spontaneous activity which changed (inhibited or facilitated) under the effects of somatic (especially repeated) stimulation; most of them reacted to stimulation of the skin of any limb. In the case of paired stimulation of the skin of limbs on different sides at large intervals (40–60 msec), inhibition of the test discharge occurred, whereas at small intervals summation (simple addition) of the impulses occurred. In their general characteristics the neurons of the raphe nuclei apparently differ little from the neurons of the reticular formation of the brain stem.Institute of Electrophysiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 32–42, January–February, 1971.  相似文献   

15.
The descending influences of the septal nuclei (lateral nucleus--LSN and bed nucleus stria terminalis--BNST) on activity of viscero-sensory neurons of the nucleus of tractus solitarius (NTS) identified by stimulation of cervical part of the n. vagus were investigated in the cat anaesthetised by chloraloze-nembutal combination. It was found that out of 70 units recorded in the NTS area 50 were identified as those of primary and secondary input vagal neurons. Influence of single, paired and frequency stimulation on the septal structures was studied on these neurons. It was revealed that 30% (15 un) reacted by phase-specific response to the single stimulation of the septal nuclei. The latent period of initial excitation was in the range 5-25 ms. During the paired stimulation these neurons were not able to react to the second stimulus for the equal 10-300 ms. It was revealed that 34% (17 un) of the identified vagal neurons reacted by a tonic change of their spontaneous activity. The increase of frequency stimulation to 20 Hz evoked different changes of the rhythmical activity of the vagal neurons (increase, diminishing or inhibition). The study of interaction between central and peripheral signals in the solitary neurons induced blocking influence of descending septal discharge on the vagal test response. It is possible that the septal downward impulses reach the vago-sensitive solitary neurons indirectly through other structures of the limbic brain (amygdala, hypothalamus) and participate in modulation of the spontaneous activity of these neurons.  相似文献   

16.
Myoblasts from rudiments of slow and fast muscle, anterior latissimus dorsi (ALD) and posterior latissimus dorsi (PLD) respectively, of 9-day-old quail embryos were cultured in vitro for a period of up to 60 days in order to give rise to well-differentiated muscle fibres. These fibres were innervated by neurons from either quail or mouse embryo spinal cord and their innervation pattern was examined by the visualization of acetylcholine receptors (ACh-R) and of acetylcholinesterase (ACh-E) activity at the neuromuscular contacts. In the culture system used, quail neurons always innervated muscle fibres at several sites and only when a fast-type activity was imposed on these neurons did a reduction in the number of the previously established neuromuscular contacts take place. In contrast, in the muscle fibres innervated by mouse neurons, a spontaneous reduction in the number of the previously established neuromuscular contacts occurred but this spontaneous reduction depended upon the level of differentiation reached by the muscle fibres in vitro. In the cultures of muscle fibres previously innervated by mouse neurons, the addition of quail neurons did not provoke any modification in the initial innervation pattern, and no quail ACh-R cluster was observed. In contrast, in the muscle fibres previously innervated by quail neurons, the mouse neurons contacted these fibres, resulting in a decrease in the number of quail ACh-R clusters. These results emphasize the part played by neurons in the establishment of the innervation pattern when muscle fibres have reached a high level of differentiation. In vitro, the slow and fast characteristics of the muscle fibres do not influence this pattern.  相似文献   

17.
Autoradiograms were prepared from midbrains and hindbrains of male and female Siberian hamsters (Phodopus sungorus), kept under short-day or long-day illumination, after injection of tritium-labeled 1,25-dihydroxycholecalciferol (vitamin D, soltriol). Concentration and retention of radioactivity was noted in nuclei of certain neurons, glial cells, and ependymal cells, and in choroid epithelium. Labeled neurons of varying intensity were found throughout the brainstem in distinct populations at characteristic topographical sites, which include cranial nerve motor nuclei, the nucleus (n.) reticularis tegmenti pontis, the caudoventral region of the n. raphe dorsalis, the n. trapezoides, the n. vestibularis lateralis and n. vestibularis superior, neurons in the various nuclei of the sensory trigeminus, accessory optic nuclei, scattered neurons in nuclei of the reticular formation, the n. ambiguus, certain cells in the area postrema, and many others. Glial cells with nuclear labeling, probably microglia, were scattered predominantly in or near myelinated nerve fascicles. The choroid epithelium showed strong nuclear labeling throughout the ventricle. Nuclear labeling of ependyma was variable and weak, mainly at ventral and lateral extensions (recesses) of the ventricle. The extensive presence of nuclear binding in select neural structures indicates that vitamin D exerts specific genomic effects on cell populations that are known to be involved in the regulation of motor, sensory, autonomic, neuroendocrine, metabolic, and immune functions. The results of these studies, in conjunction with those from other brain and peripheral tissues, recognize vitamin D-soltriol as a steroid hormone with a wide scope of hormone-specific target cells, similar to estrogen, androgen, and adrenal steroids, and which are topographically distinct and characteristic for its functions as the steroid hormone of sunlight.  相似文献   

18.
Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express "high threshold" Kv3-family channels that are required for firing at high rates (> -200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1-50 neurons, stimulated at rates between 100-1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K(+) conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment.  相似文献   

19.
Specific binding sites for 3H dihydrotestosterone are demonstrated by autoradiography in brain nuclei of sex reversed mice heterozygous for testicular feminization (Tfm) which are phenotypically intersexes with testes and accessory sex glands that consist of a mosaic of androgen insensitive Tfm cells which lack specific dihydrotestosterone binding and androgen sensitive normal cells. The nuclear group evaluated include: nucleus (n.) septi lateralis, n. interstitialis striae terminalis, n. medialis amygdalae, the hypothalamic n. arcuatus, n. ventromedialis lateralis, n. pre-mammillaris ventralis, n. preopticus medialis, and nuclei of the cranial nerves VII, X, and XII. In the sex reversed males and the female, used as controls, the frequency of neurons with specific DHT binding show a distinct male-female difference in the caudal part of the arcuate nucleus. In the sex reversed Tfm heterozygotes, in all brain nuclei studied, the frequency of labeled neurons is reduced. The extent of reduction of androgen binding in the different brain nuclei varies among as well as within individual sex reversed Tfm heterozygotes, suggesting variations of the ratio of normal to Tfm neurons in sex reversed Tfm heterozygotes. The differentially reduced androgen binding of different brain systems corresponds to a differentially reduced androgen dependent behaviour reported in the literature.  相似文献   

20.
The major anatomical characteristics of the main axis of the basal ganglia are: (1) Numerical reduction in the number of neurons across layers of the feed-forward network, (2) lateral inhibitory connections within the layers, and (3) neuro-modulatory effects of dopamine and acetylcholine, both on the basal ganglia neurons and on the efficacy of information transmission along the basal ganglia axis. We recorded the simultaneous activity of neurons in the output stages of the basal ganglia as well as the activity of dopaminergic and cholinergic neurons during the performance of a probability decision-making task. We found that the functional messages of the cholinergic and dopaminergic neurons differ, and that the cholinergic message is less specific than that of the dopaminergic neurons. The output stage of the basal ganglia showed uncorrelated neuronal activity. We conclude that despite the huge numerical reduction from the cortex to the output nuclei of the basal ganglia, the activity of these nuclei represents an optimally compressed (uncorrelated) version of distinctive features of cortical information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号