首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The decrease in inorganic phosphate (Pi) content of 10-d-old Phaseolus vulgaris L. plants did not affect rates of photosynthesis (PN) and respiration (RD), leaf growth, and adenylate concentration. Two weeks of phosphate starvation influenced the ATP content and leaf growth more than PN and RD. The ATP concentration in the leaves of 15- and 18-d-old phosphate deficient (-P) plants after a light or dark period was at least half of that in phosphate sufficient (+P, control) plants. Similar differences were found in fresh and dry matter of leaves. However, PN declined to 50 % of control in 18-d-old plants only. Though the RD of -P plants (determined as both CO2 evolution and O2 uptake) did not change, an increased resistance of respiration to KCN and higher inhibition by SHAM (salicylhydroxamic acid) suggested a higher engagement of alternative pathway in respiration and a lower ATP production. The lower demand for ATP connected with inhibition of leaf growth may influence the ATP producing processes and ATP concentration. Thus, the ATP concentration in the leaves depends stronger on Pi content than on PN and RD.  相似文献   

2.
Gniazdowska  A.  Rychter  A. M. 《Plant and Soil》2000,226(1):79-85
Bean (Phaseolus vulgaris L.) plants were cultured for 19 d on complete or on phosphate deficient culture media. Low inorganic phosphate concentration in the roots decreased ATP level and nitrate uptake rate. The mechanisms which may control nitrate uptake rate during phosphate deficiency were examined. Plasma membrane enriched fractions from phosphate sufficient and phosphate deficient plants were isolated and compared. The decrease in total phospholipid content was observed in plasma membranes from phosphate deficient roots, but phospholipid composition was similar. No changes in ATPase and proton pumping activities measured in isolated plasma membrane of phosphate sufficient and phosphate deficient bean roots were noted. The electron microscope observations carried out on cortical meristematic cells of the roots showed that active ATPases were found in plasma membrane of both phosphate sufficient and phosphate deficient plants. The decrease in inorganic phosphate concentration in roots led to increased nitrate accumulation in roots, accompanied by a corresponding alterations in NO3 distribution between shoots and roots. Nitrate reductase activity in roots of phosphate deficient plants estimated in vivo and in vitro was reduced to 50–60% of the control. The increased NO3 concentration in root tissue may be explained by decreased NR activity and lower transport of nitrate from roots to shoots. Therefore, the reduction of nitrate uptake during phosphate starvation is mainly a consequence of nitrate accumulation in the roots.  相似文献   

3.
A comparison was made of energy metabolism of nodulated N2 fixing plants and non-nodulated NO3-fed plants of Lupinus albus L. Growth, N-increment, root respiration (O2 uptake and CO2 production) and the contribution of a SHAM-sensitive oxidative pathway (the alternative pathway) in root respiration were measured. Both growth rate and the rate of N-increment were the same in both series of plants. The rate of root respiration, both O2 uptake and CO2 production, and the activity of the SHAM-sensitive pathway were higher in NO3-fed plants than in N2 fixing plants. The rate of ATP production in oxidative phosphorylation was computed also to be higher in NO3-fed plants. It is concluded that both carbohydrate costings and ATP costings for synthesis + maintenance of root material were lower in N2 fixing than in NO3-fed plants. The respiratory quotient of root respiration was 1.6 in N2-fixing plants and 1.4 in NO3-fed plants. These values were slightly higher than the values calculated on the basis of CO2 output due to N-assimilation and the experimental values of O2 uptake, but showed the same trend: highest in N2 fixing plants. Root respiration of NO3-fed plants showed a diurnal pattern (both O2 uptake, CO2 production and the activity of the SHAM-sensitive pathway), whilst no diurnal variation in root respiration was found in N2 fixing plants. However, C2H2 reduction did show a diurnal rhythm, which is suggested to be related to the diurnal variation in transpiration. Addition of NO3 to N2 fixing plants increased the rate of root respiration and the activity of the alternative pathway. This treatment did not decrease C2H2 reduction and H2 evolution within 4 days. Withdrawal of NO3-supply from NO3-fed plants decreased the rate of root respiration but had no effect on the relative activity of the alternative pathway. It is suggested that the higher rate of root respiration and the higher activity of the SHAM-sensitive pathway in NO3-fed plants is due to a larger supply of carbohydrates to the roots, partly due to a better photosynthetic performance of the shoots and partly due to a higher capacity of the roots to attract carbohydrates.  相似文献   

4.
Summary Experiments on cucumber plants grown in nutrient solution were conducted in order to study long and short time effects of ammonia on growth, nutrient element uptake and respiration of roots.Shoot yield and potassium concentration in tissue of plants treated 18 days with varied ammonia concentration were decreased. However, it was not assumed that K deficiency caused the yield reduction. The ammonia effect on K content was more pronounced in roots than in shoots.The decreased K concentration of plant tissue was linked to a diminished ability of plant roots to absorb potassium. The maximum rate of potassium uptake was lowered by ammonia during both, long- and short-time treatment. The results indicated that the NH3 influence on potassium uptake was due to effects on metabolism and permeability of roots because changes of K uptake rate occurred immediately after starting the NH3 treatment. Furthermore, it is shown that ammonia inhibited respiration of roots.During the short-time treatment net potassium efflux of roots was observed at higher NH3 concentrations. The extent of K efflux depended on K concentration of both, root tissue and nutrient solution.Pretreating the plants for 12 hours with ammonia also resulted a decline in K uptake rate. However, plant roots subjected to ammonia concentrations up to 0.09 mM completely recovered during 24 hours after removing the NH3 treatment whereas at higher NH3 concentrations only a partial recovery occurred.Furthermore, it was shown that ammonia also influenced P uptake by plant roots.  相似文献   

5.
The development of phosphate deficiency (P-stress) was observed in rooted sprouts of Solanum tuberosum L. cv. Desiree growing in solutions without phosphate. Shoot growth was inhibited by P-stress within 3 to 5 days of terminating the phosphate supply, while significant effects on root growth were not recorded until 7 to 9 days. Thus, the shoot:root dry weight ratio decreased from 4.3 to 2.6 over a 10-day period. Growth in the absence of an exogenous phosphate supply progressively diluted the phosphorus in the plant. The proportional decrease in concentration was similar in roots and shoots over a 7-day period, even though the former were growing more quickly. The potential for phosphate uptake per unit weight of root increased rapidly during the first 3 days of P-stress. When the plants were provided subsequently with a labelled, 1 mol m?3 phosphate solution, the absorption rate was 3 to 4-fold greater than that of control plants which had received a continuous phosphate supply. The increased rate of uptake by P-stressed plants was accounted for by an increase (3-fold) in the Vmax of system 1 for phosphate transport and by a marked increase in the affinity of the system for phosphate (decrease in Km). In the early stages of P-stress, before marked changes in growth were measured, the proportion of labelled phosphate translocated to the shoots increased slightly relative to the controls when a phosphate supply was restored. In the later stages of stress a greater proportion was retained in the root system of P-stressed plants than in that of controls. In plants with roots divided between solutions containing or lacking a phosphate supply, the increased absorption rate was determined by the general demand for phosphate in the plant and not by the P-status of the particular root where uptake was measured. By contrast, the poportion translocated was strongly dependent on the P-status of the root. The restoration of a phosphate supply to P-stressed plants was marked by a rapid increase in the P concentration in snoots and roots which returned to levels similar to unstressed controls within 24 h. The enhanced uptake rate persisted for at least 5 days, resulting in supra-normal concentrations of P in both shoots and roots, and in the formation of extensive necrotic areas between the veins of mature leaves. Autoradiographs showed accumulations of 32P in these lesions and at the points where guttation droplets formed on leaves.  相似文献   

6.
Culture of bean plants (Phaseolus vulgaris L. cv., Złota Saxa) for 16 d on phosphate-deficient nutrient medium resulted in an over twofold increase of pyruvate concentration in the root tissues. In a variety of plant tissues, the marked decline in cellular concentrations of adenylates and inorganic phosphate (Pi) influences the activity of pyruvate producing enzymes, which are dependent on the availability of ADP. In bean roots after 16 d of phosphate starvation pyruvate producing enzymes: phosphoenolpyruvate phosphatase (EC 3.1.3.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31) had higher activities compared to those of control plants. The observed decrease of alanine and ethanol concentration and also alcohol dehydrogenase (EC 1.1.1.1) activity in phosphate-deficient roots may be the effect of the restrictions in pyruvate utilizing pathways. The increased activity of mitochondrial NAD-malic enzyme (EC 1.1.1.40) as well as the lower consumption of pyruvate during respiration of phosphate-deficient roots indicate that pyruvate concentration in mitochondria may be elevated. It is proposed that pyruvate accumulation in phosphate-deficient roots and alternative oxidase participation in respiration are important aspects of plant metabolic adaptations to Pi limitation, and may play a role in reducing oxidative stress induced by phosphate deficiency.  相似文献   

7.
8.
The effect of prolonged phosphate starvation of bean plants (Phaseolus vulgaris L.) on the concentration of phenolics and their exudation by roots was studied. Plants cultured on phosphate-deficient media maintained a steady concentration of total phenolics in the leaves, whereas in the leaves of plants grown on complete nutrient media the phenolic concentration decreased. After 18 days of culture, higher total phenolics and anthocyanin concentrations in phosphate-deficient leaves compared with control leaves were observed. The divergent trends in total phenolic concentrations between phosphate-deficient and control leaves corresponded to the changes in the activity of L-phenylalanine ammonia-lyase. In the roots, the concentration of total phenolics was lower in phosphate-deficient plants compared with control plants. However, after 18 days of culture of bean plants, the amount of exuded phenolics from phosphate-deficient roots was 5-times higher than that from the roots of control plants. The activity of L-phenylalanine ammonia-lyase was twice as high in the roots of phosphate-starved plants. Comparable rates in the exudation of phenolics by bean roots observed after 18 days of culture on nitrogen-deficient or phosphate-deficient medium may suggest a similar system of signal transduction for phenolics release. The results are discussed in relation to the possible functions of phenolics in nutrient uptake and as chemical signals in root-soil microbe interactions to enhance the plant adaptation to particular environmental conditions.  相似文献   

9.
Matti Nuutinen  Ilmo Hassinen 《BBA》1981,637(3):481-489
The role of extracellular Pi and transmembrane fluxes across the sarcolemma in the regulation of cellular respiration was studied in isolated Langendorff-perfused rat hearts. Extracellular phosphate did not significantly affect the oxygen consumption or cellular phosphorylation potential of the myocardium. K+-induced arrest was used to change the mechanical work load of the heart. Arresting the heart caused a rapid decrease in the unidirectional efflux of phosphate determined by in vitro prelabelling of the intracellular phosphate compounds with 32P and determining the specific radioactivity of the γ-P of ATP, and the label appearance into the perfusion medium. At normal or elevated perfusate phosphate concentration there was a fairly slow net uptake of phosphate. The decrease in phosphate fluxes upon the K+-induced arrest was probably not due to a decrease in the transmembrane Na+ or K+ gradients because a further increase in the perfusate K+ concentration caused an increase in the K+ efflux to the levels observed in contracting hearts. The use of higher than normal concentrations of phosphate necessitated a lowering of the extracellular Ca2+ concentration, which caused a diminution of the oxygen consumption, accompanied by mitochondrial flavoprotein oxidation in the heart. This finding suggested that the extracellular Ca2+ concentration may be involved in the substrate level regulation of mitochondrial metabolism.  相似文献   

10.
Role of sugars in nitrate utilization by roots of dwarf bean   总被引:4,自引:0,他引:4  
Nitrate uptake and in vivo, nitrate reductase activity (NRA) in roots of Phaseolus vulgaris, L. cv. Witte Krombek were measured in nitrogen-depleted plants of varying sugar status, Variation in sugar status was achieved at the start of nitrate nutrition by excision, ringing, darkness or administration of sugars to the root medium. The shape of the apparent induction pattern of nitrate uptake was not influenced by the sugar status of the absorbing tissue. When measured after 6 h of nitrate nutrition (0.1 mol m?3), steady state nitrate uptake and root NRA were in the order intact>dark>ringed>excised. Exogenous sucrose restored NRA in excised roots to the level of intact plants. The nitrate uptake rate of excised roots, however, was not fully restored by sucrose (0.03–300 mol m?3). When plants were decapitated after an 18 h NO3? pretreatment, the net uptake rate declined gradually to become negative after three hours. This decline was slowed down by exogenous fructose, whilst glucose rapidly (sometimes within 5 min) stimulated NG?3 uptake. Presumably due to a difference in NO3? due to a difference in NO3? uptake, the NRA of excised roots was also higher in the presence of glucose than in the presence of fructose after 6 h of nitrate nutrition. The sugar-stimulation of, oxygen consumption as well as the release of 14CO2 from freshly absorbed (U-14C) sugar was the same for glucose and fructose. Therefore, we propose a glucose-specific effect on NO3? uptake that is due to the presence of glucose rather than to its utilization in root respiration. A differential glucose-fructose effect on nitrate reductase activity independent of the effect on NO3? uptake was not indicated. A constant level of NRA occurred in roots of NO3? induced plants. Removal of nutrient nitrate from these plants caused an exponential NRA decay with an approximate half-life of 12 h in intact plants and 5.5 h in excised roots. The latter value was also found in roots that were excised in the presence of nitrate, indicating that the sugar status primarily determines the apparent rate of nitrate reductase decay in excised roots.  相似文献   

11.
Barley plants were grown in nutrient solutions, which were maintained at either 0 (-P) or 15 μ M orthophosphate (+P). After 11 days phosphate influx into the intact roots of the -P plants began to increase by comparison with +P plants. During this period differences became apparent between the treatments in absolute growth rates, as well as in the root:shoot ratios. Phosphate influx in the -P plants continued to increase as a function of time, to a maximum value of 2.4 μmol (g fresh wt)-1h-1 at 16 days after germination. This rate was 6 times higher than influx values for +P plants of the same age. During the period of enhanced uptake phosphate was strongly correlated (r2= 0.77) with root organic phosphate concentration. – The enhancement of inorganic phosphate influx into intact roots of -P plants was rapidly reduced by the provision of 15 μ M orthophosphate. Typically, within 4 h of exposure to this concentration of phosphate, influx values fell from 1.80 ± 0.20 to 0.75 ± 0.03 μmol (g fresh wt)-1 h-1, while inorganic phosphate concentrations of the roots increased from 0.12 to 1.15 μmol (g fresh wt)-1 during the same period. Hill plots of the influx data obtained during this period, treating root inorganic phosphate as an inhibitor of influx, gave Hill coefficients close to 2. The rapidity of the reduction of influx associated with increased root inorganic phosphate together with the Hill plot data provide evidence for an allosteric inhibition of influx by internal inorganic phosphate.  相似文献   

12.
Acid-soluble phosphate esters were determined in extracts of plant material after a 24 h exposure of the roots of intact alfalfa plants to nutrient media labelled with32Pi. Similar phosphate ester patterns were found in 2-, 3-, 8-, and 9-week-old plants with the exception of Gra-P which could be detected only in shoot extracts. However, phosphate ester levels differed in the shoots and roots. Whereas Fru-P2, Glc-6-P, Fru-6-P, and adenine nucleotides were more abundant in the shoots, Grn-P and P-choline levels were higher in the roots. Certain differences in the levels of P-esters were also recorded between plants susceptible and resistant to bacterial wilt.  相似文献   

13.
14.
Starvation-Survival Physiological Studies of a Marine Pseudomonas sp.   总被引:24,自引:17,他引:7       下载免费PDF全文
Starved cultures of a marine Pseudomonas sp. showed a 99.9% decrease in viable cell count during the first 25 days of starvation, yet the culture maintained 105 viable cells per ml for over 1 year. The physiological responses of populations of a marine Pseudomonas sp. to nutrient starvation were observed for periods of up to 40 days. At various intervals during starvation, the numbers of total, viable, and respiring cells were determined within the cultures. The ATP content, endogenous respiration rate, uptake rates, and percent respiration for exogenous glucose and glutamate were determined throughout the starvation period to characterize the physiological changes in the cells. It was observed that, after initial adjustment periods, all parameters tested reached stabilized states after 18 to 25 days of starvation. The results indicate that the actively respiring subpopulation, rather than the viable or total cell numbers, is the most appropriate denominator for interpretation of observed activities on an individual cell basis.  相似文献   

15.
This work is a study of the metabolic disorder due to ammonium toxicity in cucumber (Cucumis sativus L. cv. suisei No. 2) leaves. The cucumber was cultured with 20 and 200 mg/l NH3-N for 5 days. In the first half of this experiment, the plant leaves were photosynthesized for 3 hours to study the distribution of 14C in starch and other fractions. The incorporation of photosynthesized 14C into not only starch but also other higher polymers was suppressed by ammonium toxicity. On the other band, the rate of 14C incorporation in 80 % ethanol soluble fraction was higher in the treatment of 200 mg/l NH3-N. In the latter half of experiment, phosphate esters in the loaves were analyzed by column chromatography. The opposing contents of uridine diphosphoglucose (UDPG) and the uridine compound containing sugar or sugar derivative (UDPX) were determined by different ammonia levels. Toxicity of ammonia resulted in an increase of UDPG and a decrease of UDPX. The level of ATP was not changed so much. The content of glucose-6-phosphate (G-6-P) in injured plants was lower than that of normal plants, while ghicose-1-phosphate (G-1-P) and fructose-6–phosphate (F-6-P) were higher in injured plants. These results further suggested the disorder of carbohydrate metabolism due to ammonium toxicity which was reported previously.  相似文献   

16.
The time-course for adjustments in the rate of extension of wheat (Triticum aestivum L. cv. Alexandria) roots, and the activity and capacity of respiratory pathways in the root apex, were determined after pruning the shoot to the ligule of the first leaf. Leaf pruning reduced the extension rate of both seminal and lateral roots. The onset of the response occurred within 1 h of pruning for laterals and between 2 and 3 h for seminals. The reduction in rate appears to be the result of a decrease in carbohydrate availability because (1) in seminal roots it was preceded by a decrease in soluble sugar content of the apical part of the growth zone (0–5 mm behind the root apex) and (2) supplying glucose (50 mM) to the roots of plants defoliated 24 h earlier led to a steady increase in extension rate of both seminal and lateral roots compared to non-fed controls. Supplying 3-O-methyl glucose had no effect. The reduction in extension rate of seminal roots was accompanied (or slightly preceded) by a reduction in respiratory O2 uptake in the apical part of the growth zone (0–5 mm). Changes in respiratory activity in the basal part of the growth zone (5–10 mm) only occurred several hours later. At the time root extension rate was reduced, the rate of O2 uptake could be stimulated with FCCP, which indicates that respiration was under the fine control of adenylates. From these results we suggest the following sequence of events occurs after defoliation. Firstly, defoliation reduces the supply of sugars to the root apex, this leads to a reduction in rate of extension through some form of coarse control by carbohydrates on cell division and expansion, which in turn reduces the rate of respiratory O2 uptake because of a smaller demand for ATP. The results also indicate that there is a rapid (<1.5 h) reduction in respiratory capacity in the root apex after defoliation which occurs before any change in the overall rate of respiration.  相似文献   

17.
Summary Short-time experiments with 32P-labelled phosphate and chase experiments with equally labelled cells were carried out with synchronized algae under conditions of optimum phosphate uptake. In short-time experiments, in the presence as in the absence of CO2, orthophosphate and organic phosphates are rapidly labelled, but their time curves show saturation behaviour after 10 to 20 min. Labelling of polyphosphates proceeds at a constant rate after a short lag period of about 5 min. In equally labelled algae 32P-labelling correspondingly decreases in orthophosphate and in organic phosphates, but increases by about the same amount in the fraction of acid-insoluble polyphosphates. In the presence of external phosphate and in the light, polyphosphates show no visible decay within the 20 min of the chase experiments.A comparison of the two kinds of experiments suggests that polyphosphates are secondary products of photophosphorylation following only after orthophosphate and organic phosphates, probably after ATP. The rates of photophosphorylation are certainly much higher than the rates of labelling in organic phosphates because of the limiting phosphate uptake. Since the polyphosphates show no decay during the time of the experiments their turnover is low and the rates of polyphosphate labelling after a phosphate starvation period, and after the short lag period, can be regarded as approximate rates of polyphosphate synthesis. These rates are lower than the rates of phosphate uptake.In young cells of the synchronous culture phosphate replenishment after a 5-h starvation requires 2 to 3 h. After replenishment or in a culture undisturbed by phosphate starvation, the rates of polyphosphate accumulation, like the rates of phosphate uptake are much lower. In the presence of CO2 they are constant for several hours, if related to culture volume with constant cell number. Polyphosphate accumulation is proportional to phosphate uptake under these conditions amounting to about one third. In the absence of CO2, the rates decrease after 2 to 4 h of CO2-starvation and, like in short-time experiments a large proportion of the phosphate taken up is used for polyphosphate accumulation. The low rates of long-time experiments may represent a steady state between formation and decay of polyphosphates. Since the cells kept in the absence of CO2 are prevented from growing they actually accumulate more polyphosphates per cell volume, per chlorophyll, and per dry weight than the cells in the presence of CO2.The rates of polyphosphate formation are discussed with respect to their turnover in the light observed by other investigators. They are regarded to be a result of competition for ATP together with the orthophosphate pool of the cells, and of the compartmentation. The rates of polyphosphate formation are rather low compared with the probable rates of ATP formation under various conditions of photophosphorylation. Therefore, the formation of polyphosphates is regarded as a process of secondary order of magnitude in the energy metabolism of algal cells.
Im Text verwendete Abkürzungen P1 Trichloressigsäure lösliche Phosphate - davon Pi Orthophosphat - Po organisches Phosphat - Pul Hydrolyse-labiles TCE-unlösliches Phosphat - Pus Hydrolyse-stabiles TCE-unlösliches Phosphat - Pges Gesamtphosphat, bei kurzzeitiger 32P-Markierung Phosphataufnahme - Chl Chlorophyll  相似文献   

18.
Bean plants ( Phaseolus vulgaris ) grown in phosphate-deficient (–P) medium display deficiency symptoms after about 2 weeks of culture. A decrease in inorganic phosphate level in roots was observed after 10 days of culture, and after 17 days it was more than 30 times less than control. The dry weight of the shoots of phosphate-deficient plants was lower whereas the dry weight of the roots was higher as compared to the control roots. After 2 weeks of culture, the sucrose level in –P roots almost doubled compared to control roots. An increase in glucose and fructose was observed earlier than that of sucrose, and after 10 days of culture in phosphate-deficient medium the glucose level in –P roots was about 3 times higher than that in +P roots. At the same time, a decrease in hexose-phosphate level was observed. This decrease may reflect a higher drain from the hexose phosphate pool, or it may be due to the lower capacity for hexose phosphorylation of phosphate-deficient plants, as judged by the lower hexokinase and fructokinase activities. The ratio of non-phosphorylated to phosphorylated sugars in –P roots was about 5 times higher as compared to control roots. We propose that glucose and fructose accumulation in phosphate-deficient roots represents a non-metabolic, probably vacuolar pool which is not utilized for growth and metabolism of the roots.  相似文献   

19.
Changes in the efficiency of root respiration were examined on intact plants of Pisum sativum L. cv Rondo after addition of nitrate or ammonium to the culture solutions. Nitrate was absorbed immediately after addition and elicited a respiratory rise (O2-uptake as well as CO2-production) to 160% at most. This occurred both in roots of plants fixing N2 and in those of non-nodulated plants pregrown for 1 or 2 weeks on a nitrogen-free culture solution. In older plants, used after 2 weeks of N-free growth, the full capacity of the cytochrome path was engaged in root respiration. This was demonstrated by the absence of an effect of the uncoupler carbonylcyanide m-chlorophenylhydrazone in the presence of 25 millimolar salicylhydroxamate, an inhibitor of the alternative path. In these plants more than 90% of the nitrate-induced stimulation of root respiration was salicylhydroxamate-sensitive. In young plants, used after 1 week of N-free growth, the cytochrome path was not saturated. Its activity increased instantaneously at the expense of alternative path activity, which initially dropped to zero and subsequently increased to 160% of the control 7 hours after nitrate supply. The rate of photosynthesis rose to 120% of the control, but not before 1 hour after nitrate supply, suggesting that the stimulation of root respiration was not due to a higher rate of photosynthesis. Experiments with plants grown with a split-root system showed that respiration rate and alternative path activity only increased in the root halves exposed to nitrogen. Ammonium was equally effective as nitrate in stimulating root respiration. These results lead to the conclusion that alternative-path mediated root respiration contributes to synthesis of ATP during at least the first 24 hours following nitrogen supply.  相似文献   

20.
7 days or 7 weeks old alfalfa plants (Medicago sativa L.), susceptible (S) and resistant (R) to bacterial wilt, were inoculated withCorynebacterium michiganense pv.insidiosum and on day 8 and 15 after inoculation the levels of acid-soluble phosphate esters (P-esters) were determinated by means of32P labelling in the shoots or roots. The most significant changes were recorded in the roots of the older R plants grown in full Knop nutrient solutions on day 8 after inoculation. The marked reduction of inorganic phosphate (P1) uptake by whole R plants is accompanied by a decrease in the levels of fructose-l, 6-bisphosphate (Fru-P2), glucose-6-phosphate (Glc-6-P), fructose-6-phosphate (Fru-6-P), adenosine mono-, and diphosphate (AMP and ADP), phosphorylcholine (P-choline) and a proportional increase in the level of P1. In the S plants, infection affected neither P1 uptake nor P1 proportions. In the plants grown after inoculation in diluted Knop’s solutions (0.147 mM KH2PO4), infection induced a reduction of the radial transport of P1 to the segments of R roots whereas a reduction of the levels was only recorded in some P-esters [AMP, ADP, dihydroxyacetone phosphate (DHAP), and P-choline, but no decrease of Fru-P2, Glc-6-P and Fru-6-P]. In the S plants, P1 transport and the levels of P-esters were increased by the infection. P1 transport exhibited considerable metabolic dependence (DNP, DCCD). Bacterial infection probably had no influence on the activity of the plasma membrane ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号