首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-beta-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel "modularly iterative" mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery.  相似文献   

2.
The myxobacterial polyketide secondary metabolites aurafuron A and B were identified by genome mining in the myxobacterial strain Stigmatella aurantiaca DW4/3-1. The compounds contain an unusual furanone moiety and resemble metabolites isolated from soil-dwelling and marine actinobacteria, a fungus and mollusks. We describe here the cloning and functional analysis of the aurafuron biosynthetic gene cluster, including site-directed mutagenesis and feeding studies using labeled precursors. The polyketide core of the aurafurones is assembled by a modular polyketide synthase (PKS). As with many such systems described from myxobacteria, the aurafuron PKS exhibits a number of unusual features, including the apparent iterative use of a module, redundant modules and domains, a trans acting dehydratase and the absence of a terminal thioesterase domain. Four oxidoreductases are encoded within the gene locus, some of which likely participate in formation of the furanone moiety via a Baeyer-Villiger type oxidation. Indeed, inactivation of a gene encoding a cytochrome P450 monooxygenase completely abolished production of both compounds. We also compare the complete gene locus to biosynthetic gene clusters from two Streptomyces sp., which produce close structural analogues of the aurafurones. A portion of the post-PKS biosynthetic machinery is strikingly similar in all three cases, in contrast to the PKS genes, which are highly divergent. Phylogenetic analysis of the ketosynthase domains further indicates that the PKSs have developed independently (polyphyletically) during evolution. These findings point to a currently unknown but important biological function of aurafuron-like compounds for the producing organisms.  相似文献   

3.
4.
5.
黏细菌的显著特征之一是能够合成结构多样、功能丰富的天然产物.模块化聚酮合酶(PKS)和非核糖体肽合成酶(NRPS)途径是黏细菌合成天然产物的主要方式.与经典模块PKS/NRPS相比,黏细菌来源的模块化PKS/NRPS常表现出新颖的装配特征,显示出多样化的遗传加工潜能和装配产物结构多样性.本文综合归类分析了黏细菌来源的模块化PKS/NRPS遗传装配线类型及其对应化合物的生化结构特征,图文并茂地呈现了黏细菌在遗传、生化、组合生物合成、进化和药物开发领域的生机和潜能,并展望了基因组学时代带来的契机.  相似文献   

6.
Haterumalides are halogenated macrolides with strong antitumor properties, making them attractive targets for chemical synthesis. Unfortunately, current synthetic routes to these molecules are inefficient. The potent haterumalide, oocydin A, was previously identified from two plant-associated bacteria through its high bioactivity against plant pathogenic fungi and oomycetes. In this study, we describe oocydin A (ooc) biosynthetic gene clusters identified by genome sequencing, comparative genomics, and chemical analysis in four plant-associated enterobacteria of the Serratia and Dickeya genera. Disruption of the ooc gene cluster abolished oocydin A production and bioactivity against fungi and oomycetes. The ooc gene clusters span between 77 and 80 kb and encode five multimodular polyketide synthase (PKS) proteins, a hydroxymethylglutaryl-CoA synthase cassette and three flavin-dependent tailoring enzymes. The presence of two free-standing acyltransferase proteins classifies the oocydin A gene cluster within the growing family of trans-AT PKSs. The amino acid sequences and organization of the PKS domains are consistent with the chemical predictions and functional peculiarities associated with trans-acyltransferase PKS. Based on extensive in silico analysis of the gene cluster, we propose a biosynthetic model for the production of oocydin A and, by extension, for other members of the haterumalide family of halogenated macrolides exhibiting anti-cancer, anti-fungal, and other interesting biological properties.  相似文献   

7.
Xue Y  Wilson D  Sherman DH 《Gene》2000,245(1):203-211
The methymycin and pikromycin series of antibiotics are structurally related macrolides produced by several Streptomyces species, including Streptomyces venezuelae ATCC 15439, which produces both 12-membered ring macrolides methymycin, neomethymycin, and 14-membered ring macrolides pikromycin and narbomycin. Cloning and sequencing of the biosynthetic gene clusters for these macrolides from three selected Streptomyces strains revealed a common genetic architecture of their polyketide synthases (PKSs). Unlike PKS clusters of other 14-membered ring macrolides such as erythromycin and oleandomycin, each of the pikromycin series producers harbors a six module PKS cluster, in which modules 5 and 6 are encoded on two separate proteins instead of one bimodular protein, as well as a thioesterase II gene immediately downstream of the main PKS gene. The results shed new light on the evolution of modular PKSs and provide further evidence on the regulation of methymycin and pikromycin production in S. venezuelae ATCC 15439.  相似文献   

8.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

9.
A previously unidentified set of genes encoding a modular polyketide synthase (PKS) has been sequenced in Saccharopolyspora erythraea, producer of the antibiotic erythromycin. This new PKS gene cluster (pke) contains four adjacent large open reading frames (ORFs) encoding eight extension modules, flanked by a number of other ORFs which can be plausibly assigned roles in polyketide biosynthesis. Disruption of the pke PKS genes gave S. erythraea mutant JC2::pSBKS6, whose growth characteristics and pattern of secondary metabolite production did not apparently differ from the parent strain under any of the growth conditions tested. However, the pke PKS loading module and individual pke acyltransferase domains were shown to be active when used in engineered hybrid PKSs, making it highly likely that under appropriate conditions these biosynthetic genes are indeed expressed and active, and synthesize a novel polyketide product.  相似文献   

10.
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria.  相似文献   

11.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

12.
Polyketides are a family of complex natural products that are built from simple carboxylic acid building blocks. In microorganisms, the majority of these secondary metabolites are produced by exceptionally large, multifunctional proteins termed polyketide synthases (PKSs). Each unit of a type I PKS assembly line resembles a mammalian type fatty acid synthase (FAS), although certain domains are optionally missing. The evolutionary analysis of microbial PKS has revealed a long joint evolution process of PKSs and FASs. The phylogenomic analysis of modular type I PKSs as the most widespread PKS type in bacteria showed a large impact of gene duplications and gene losses on the evolution of type I PKS in different bacterial groups. The majority of type I PKSs in actinobacteria and cyanobacteria may have evolved from a common ancestor, whereas in proteobacteria most type I PKSs were acquired from other bacterial groups. The modularization of type I PKSs almost unexceptionally started with multiple duplications of a single ancestor module. The repeating modules represent ideal platforms for recombination events that can lead to corresponding changes in the actual chemistry of the products. The analysis of these “natural reprogramming” events of PKSs may assist in the development of concepts for the biocombinatorial design of bioactive compounds.  相似文献   

13.
Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium.  相似文献   

14.
MOTIVATION: The genome of the social amoeba Dictyostelium discoideum contains an unusually large number of polyketide synthase (PKS) genes. An analysis of the genes is a first step towards understanding the biological roles of their products and exploiting novel products. RESULTS: A total of 45 Type I iterative PKS genes were found, 5 of which are probably pseudogenes. Catalytic domains that are homologous with known PKS sequences as well as possible novel domains were identified. The genes often occurred in clusters of 2-5 genes, where members of the cluster had very similar sequences. The D.discoideum PKS genes formed a clade distinct from fungal and bacterial genes. All nine genes examined by RT-PCR were expressed, although at different developmental stages. The promoters of PKS genes were much more divergent than the structural genes, although we have identified motifs that are unique to some PKS gene promoters.  相似文献   

15.
《Gene》1998,216(2):255-265
Five clustered polyketide synthase (PKS) genes, rifArifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69–79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The β-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86–90%) and to other PKSs (78–85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51–60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246–248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the β-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a β-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B.  相似文献   

16.
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.  相似文献   

17.
Lichens are known to produce a variety of secondary metabolites including polyketides, which have valuable biological activities. Some polyketides are produced solely by lichens. The biosynthesis of these compounds is primarily governed by iterative type I polyketide synthases. Hypogymnia physodes synthesize polyketides such as physodic, physodalic and hydroxyphysodic acid and atranorin, which are non-reducing polyketides. Two novel non-reducing polyketide synthase (PKS) genes were isolated from a fosmid genomic library of a mycobiont of H. physodes using a 409bp fragment corresponding to part of the reductase (R) domain as a probe. H. physodes PKS1 (Hyopks1) and PKS2 (Hypopks2) contain keto synthase (KS), acyl transferase (AT), acyl carrier protein (ACP), methyl transferase (ME) and R domains. Classification based on phylogeny analysis using the translated KS and AT domains demonstrated that Hypopks1 and Hypopks2 are members of the fungal non-reducing PKSs clade III. This is the first report of non-reducing PKSs containing the R domain-mediated release mechanisms in lichens, which are also rare fungal type I PKS in non-lichenized filamentous fungi.  相似文献   

18.
Abstract

Over a decade ago, the analysis of the complete sequence of the genome of the human pathogen Mycobacterium tuberculosis revealed an unexpectedly high number of open reading frames encoding proteins with homology to polyketide synthases (PKSs). PKSs form a large family of fascinating multifunctional enzymes best known for their involvement in the biosynthesis of hundreds of polyketide natural products with diverse biological activities. The surprising polyketide biosynthesis capacity of M. tuberculosis has been investigated since its initial inference from genome analysis. This investigation has been based on the genes found in M. tuberculosis or their orthologs found in other Mycobacterium species. Today, the majority of the PKS-encoding genes of M. tuberculosis have been linked to specific biosynthetic pathways required for the production of unique lipids or glycolipid conjugates that are critical for virulence and/or components of the extraordinarily complex mycobacterial cell envelope. This review provides a synopsis of the most relevant studies in the field and an overview of our current understanding of the involvement of PKSs and several other polyketide production pathway-associated proteins in critical biosynthetic pathways of M. tuberculosis and other mycobacteria. In addition, the most relevant studies on PKS-containing biosynthetic pathways leading to production of metabolites from mycobacteria other than M. tuberculosis are reviewed.  相似文献   

19.
Sequence comparisons of multiple acyltransferase (AT) domains from modular polyketide synthases (PKSs) have highlighted a correlation between a short sequence motif and the nature of the extender unit selected. When this motif was specifically altered in the bimodular model PKS DEBS1-TE of Saccharopolyspora erythraea, the products included triketide lactones in which acetate extension units had been incorporated instead of propionate units at the predicted positions. We also describe a cassette system for convenient construction of hybrid modular PKSs based on the tylosin PKS in Streptomyces fradiae and demonstrate its use in domain and module swaps.  相似文献   

20.
The Mycobacterium tuberculosis genome has revealed a remarkable array of polyketide synthases (PKSs); however, no polyketide product has been isolated thus far. Most of the PKS genes have been implicated in the biosynthesis of complex lipids. We report here the characterization of two novel type III PKSs from M. tuberculosis that are involved in the biosynthesis of long-chain alpha-pyrones. Measurement of steady-state kinetic parameters demonstrated that the catalytic efficiency of PKS18 protein was severalfold higher for long-chain acyl-coenzyme A substrates as compared with the small-chain precursors. The specificity of PKS18 and PKS11 proteins toward long-chain aliphatic acyl-coenzyme A (C12 to C20) substrates is unprecedented in the chalcone synthase (CHS) family of condensing enzymes. Based on comparative modeling studies, we propose that these proteins might have evolved by fusing the catalytic machinery of CHS and beta-ketoacyl synthases, the two evolutionarily related members with conserved thiolase fold. The mechanistic and structural importance of several active site residues, as predicted by our structural model, was investigated by performing site-directed mutagenesis. The functional identification of diverse catalytic activity in mycobacterial type III PKSs provide a fascinating example of metabolite divergence in CHS-like proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号