首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of dietary casein and sucrose levels on nutrient intake, and distinguished the effects of carbohydrate and protein consumption on growth, fat content, pyruvate metabolism and blood trehalose level of 5th instar Manduca sexta larvae. Growth increased with increasing casein consumption but was unaffected by carbohydrate intake. Fat content also increased with carbohydrate consumption, but on carbohydrate-free diets fat content increased with increased protein consumption. Blood trehalose level and pyruvate metabolism were examined by nuclear magnetic resonance spectroscopy analysis of blood following administration of (3-(13)C)pyruvate. On diets containing sucrose, blood trehalose increased with increasing carbohydrate intake, and on most diets trehalose was synthesized entirely from dietary sucrose. Pyruvate cycling, indicated by the alanine C2/C3 (13)C enrichment ratio, increased with carbohydrate consumption reflecting increased glycolysis, and pyruvate decarboxylation exceeded carboxylation on all sucrose diets. Larvae that consumed <75 mg/day sucrose were gluconeogenic, based on the [2 (trehalose C6)(Glx C3/C2)]/alanine C2] (13)C enrichment ratio. On carbohydrate-free diets, blood trehalose levels were low and maintained entirely by gluconeogenesis. Blood trehalose level increased with increasing protein intake. Pyruvate cycling was very low, although many insects displayed higher levels of pyruvate decarboxylation than carboxylation. All gluconeogenic larvae displayed alanine (13)C enrichment ratios <0.35 and had blood trehalose levels <50 mM.  相似文献   

2.
Induction of gluconeogenesis is accelerated in larvae of the insect Manduca sexta L. parasitized by Cotesia congregata (Say), maintaining the concentration of the blood sugar trehalose, an important nutrient for parasite development. Investigation has demonstrated that when host larvae are offered a choice of diets with varying levels of sucrose and casein, parasitized insects consume a different balance of these nutrients, principally due to a decrease in protein consumption. The result is metabolic homeostasis, with normal unparasitized and parasitized larvae exhibiting similar levels of gluconeogenesis and blood sugar level. In the present study, normal unparasitized and parasitized larvae were maintained on individual chemically defined diets having the balance of protein and carbohydrate consumed by each when offered a dietary choice. Total dietary nutrient, the sum of carbohydrate and protein, was provided at six levels, composed of three pairs of diets. Each diet pair consisting of diets having equivalent overall nutrient ratios of 2:1 and 1:1 casein/sucrose. Host growth and diet consumption were significantly affected by dietary nutrient level and the magnitude of these effects was influenced by parasitism. Due to the effects of dietary nutrient level on diet consumption, none of the unparasitized and parasitized larvae within any of the three diet pairs consumed protein and carbohydrate at the levels predicted by the earlier choice experiments. Among insects on all of the diets, however, two groups of unparasitized and parasitized larvae consumed the expected levels of protein and carbohydrate. In each case, gluconeogenesis, as measured by 13C nuclear magnetic resonance spectroscopy (NMR) analysis of pyruvate cycling and trehalose synthesis from [2-13C]pyruvate, was evident in unparasitized and parasitized insects, confirming the conclusions of the earlier experiments. Generally, all larvae that consumed less than approximately 250 mg of sucrose over the 3-day feeding period, were gluconeogenic, regardless of diet. Differential carbohydrate consumption, therefore, was an important factor in inducing gluconeogenesis in both unparasitized and parasitized insects. The selective 13C enrichment in trehalose displayed by non-gluconeogenic larvae on some diets demonstrated trehalose formation from [2]pyruvate. The absence of net carbohydrate synthesis in these insects was likely due to an elevation of glycolysis. There was no significant effect of diet consumption or parasitism on blood trehalose level. Parasitized larvae displayed higher levels of gluconeogenesis than did unparasitized insects, a finding consistent with the conclusion that blood sugar is rapidly sequestered by developing parasites. The parasite burden, the total number of parasites developing within host larvae, as well as the number of parasites emerging from host larvae to complete development, was significantly less at the lowest dietary nutrient level, but was otherwise similar at all dietary nutrient levels. Moreover, the number of parasites that emerged increased with increasing diet consumption as reflected by host final weight.  相似文献   

3.
Alterations of carbohydrate metabolism associated with parasitism were examined in an insect, Manduca sexta L. In insect larvae maintained on a low carbohydrate diet gluconeogenesis from [3-13C]alanine was established from the fractional 13C enrichment in trehalose, a disaccharide of glucose and the blood sugar of insects and other invertebrates. After transamination of the isotopically substituted substrate to [3-13C]pyruvate, the latter was carboxylated to oxaloacetate ultimately leading to de novo glucose synthesis and trehalose formation. Trehalose was selectively enriched with 13C at C1 and C6 followed by C2 and C5. 13C enrichment of blood sugar in insects parasitized by Cotesia congregata (Say) was significantly greater than was observed in normal animals. The relative contributions of pyruvate carboxylation and decarboxylation to trehalose labeling were determined from the 13C distribution in glutamine, synthesized as a byproduct of the tricarboxylic acid cycle. The relative contribution of carboxylation was significantly greater in parasitized larvae than in normal insects providing additional evidence of elevated gluconeogenesis due to parasitism. Despite the increased gluconeogenesis in parasitized insects the level of blood sugar was the same in all animals. Because de novo glucose synthesis does not normally maintain blood sugar level in insects maintained under these dietary conditions the findings suggest an aberrant regulation over gluconeogenesis. The 13C labeling in trehalose was nearly symmetric in all insects but the mean C1/C6 13C ratio was higher in parasitized animals suggesting a lower activity of the pentose phosphate pathway that brings about a redistribution of 13C in trehalose following de novo glucose synthesis. Additional studies with insects maintained on a high carbohydrate diet and administered [1,2-13C2]glucose confirmed a decreased level of pentose cycling during parasitism consistent with a lower level of lipogenesis. It is suggested, however, that the pentose pathway may facilitate the synthesis of trehalose from dietary carbohydrate by directing hexose phosphate cycled through the pathway to the production of energy.  相似文献   

4.
Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed.  相似文献   

5.
Metabolic alterations that accompany parasitism of invertebrate animals can play an important role in parasite development. Employing 13C NMR, this study examined pyruvate cycling from (2-(13)C)pyruvate in the lepidopteran insect Manduca sexta, and the effects of parasitism by the hymenopteran Cotesia congregata on the gluconeogenic formation of trehalose, the haemolymph or blood sugar of insects. Larvae were maintained on a semi-synthetic sucrose-free diet, or on the same diet with sucrose at 8.5 g/l. Pyruvate cycling was evident from the 13C enrichment in C3 of alanine, derived following carboxylation to oxaloacetate, and was similar in parasitized and normal insects regardless of diet. Trehalose was formed following de novo synthesis of glucose, and net synthesis was estimated from the 13C distribution in trehalose and alanine. The 13C-enrichment ratio [2trehalose C6/alanine C3] is an indicator of the level of gluconeogenesis relative to glycolysis, both enrichments were derived from (2-(13)C)pyruvate in the same manner. The ratio was greater than unity in all insects, regardless of diet, but was significantly greater in parasitized larvae, demonstrating an enhanced level of gluconeogenesis. This was confirmed by analysis of the 13C distribution in trehalose and glutamine derived from (3-(13)C)alanine. Despite enhanced de novo trehalose formation in parasitized insects, the haemolymph sugar level was similar to that of normal larvae. Because haemolymph trehalose regulates dietary carbohydrate intake, but not gluconeogenesis, the results suggest that accelerated induction of gluconeogenesis is an adaptive response to parasitism that provides increased carbohydrate for parasite growth and simultaneously maintains nutrient intake.  相似文献   

6.
Dietary carbohydrate, the principal energy source for insects, also determines the level of the blood sugar trehalose. This disaccharide, a byproduct of glycolysis, occurs at highly variable concentrations that play a key role in regulating feeding behavior and growth. Little is known of how developing insects partition the metabolism of dietary carbohydrate to meet the needs for blood trehalose, ribose sugars and NADPH, as well as energy production. This study examined the effects of varying dietary sucrose levels between 3.4 and 34 g/l in an artificial diet on growth rate, depot fat content and blood sugar formation from (13)C-enriched glucose in Manduca sexta. (2-(13)C)Glucose or (1,2-(13)C(2))glucose were administered to larvae by injection and after 6 h blood was analyzed by nuclear magnetic resonance spectroscopy. [2-(13)C]Trehalose was the principal product of [2-(13)C]glucose, but trehalose was also (13)C-enriched at C1 and C3, demonstrating activity of the pentose phosphate pathway. The trehalose C1/C2 (13)C-enrichment ratio, a measure of the substrate cycled through the pentose pathway, significantly increased with increasing dietary sugar, and reached a mean of 0.22 at the highest level. Blood trehalose concentration increased from approximately 38 mM at the lowest dietary carbohydrate level to 75 mM at the highest. Moreover, blood trehalose, growth rate and depot fat all increased in precisely the same way in relation to the level of pentose cycling. Based on the multiplet (13)C-NMR signal structure of trehalose synthesized from [1,2-(13)C(2)]glucose by insects maintained on a high carbohydrate diet, it was established that the formation of trehalose from glucose phosphate derived directly from the administered substrate, with no involvement of the pentose pathway, was greater than that from glucose phosphate metabolized through the pentose pathway prior to trehalose synthesis. On the other hand, glucose phosphate first metabolized through the pentose pathway contributed more to pyruvate formation than did glucose phosphate formed from the labeled substrate metabolized directly to pyruvate via glycolysis; this finding based on the multiplet (13)C-NMR signal structure in alanine derived from pyruvate. The results suggest that as dietary carbohydrate increases blood sugar synthesis from glucose phosphate derived directly from dietary sugar is facilitated by the pentose pathway which provides an increasing amount of substrate to pyruvate formation.  相似文献   

7.
The present studies confirm that storage carbohydrate synthesis from [1-(13)C]glucose is elevated in Manduca sexta parasitized by Cotesia congregata, despite a decrease in the rate of metabolism of the labeled substrate. Further, the results demonstrate that a similar pattern of carbohydrate synthesis and glucose metabolism was induced in normal larvae by administration of the glycolytic inhibitor, iodoacetate. (13)C enrichment of C6 of trehalose and glycogen demonstrated randomization of the C1 label at the triose phosphate step of the glycolytic/gluconeogenic pathway and suggested that gluconeogenesis, that is, de novo carbohydrate formation, contributed to the synthesis of carbohydrate in both normal and parasitized insects. Accounting for differences in the (13)C enrichment in C1 of trehalose and glycogen due to direct labeling from [1-(13)C]glucose, the mean C6/C1 labeling ratios in trehalose and glycogen of parasitized larvae and insects treated with iodoacetate were greater than the mean ratio observed in normal larvae, suggesting a greater contribution of gluconeogenesis to trehalose labeling in parasitized insects. This conclusion was confirmed by additional investigations on the metabolism of [3-(13)C]alanine by normal and parasitized insects. The pattern of (13)C enrichment in hemolymph trehalose observed in normal larvae maintained on a low carbohydrate diet indicated a large contribution of gluconeogenesis, while gluconeogenesis contributed very little to trehalose labeling in normal insects maintained on a high carbohydrate diet. Parasitized insects maintained on a high or a low carbohydrate diet displayed a significantly greater contribution of gluconeogenesis to trehalose labeling than was observed in normal larvae maintained on the same diets. In conclusion, these investigations indicate that regulation over the utilization of dietary glucose for trehalose and glycogen synthesis as well as the dietary regulation of de novo carbohydrate synthesis were altered by parasitism.  相似文献   

8.
Gluconeogenesis and blood sugar formation were examined in Manduca sexta, fed carbohydrate- and fat-free diets with varying levels of casein. De novo carbohydrate synthesis was examined by nuclear magnetic resonance spectroscopy of the 13C enrichment in blood trehalose and alanine derived from (2-(13)C)pyruvate and (2,3-(13)C(2))pyruvate administered to 5th instar larvae. Gluconeogenic flux and blood trehalose concentration were positively correlated with protein consumption. On all diets, the 13C distribution in trehalose was asymmetric, with C6 more highly enriched than C1. The C6/C1 13C enrichment ratio, however, decreased with increased protein consumption and gluconeogenic flux. Although the asymmetric 13C enrichment pattern in trehalose is consistent with pentose cycling via the pentose phosphate pathway following de novo synthesis, experiments employing [2,3-(13)C(2)]pyruvate demonstrated that pentose cycling is not detected in insects under these nutritional conditions. Analysis of the multiplet NMR signal structure in trehalose due to spin-spin coupling between adjacent 13C enriched carbons showed the absence of uncoupling expected by pentose phosphate pathway activity. Here we suggest that the asymmetric 13C distribution in trehalose results from a disequilibrium of the triose phosphate isomerase-catalyzed reaction.  相似文献   

9.
Pyruvate cycling from (2-13C)pyruvate was detected in vivo in intact 5th instar Manduca sexta larvae by application of NMR spectroscopy. Cycling was evident from the enrichment of C3 in alanine following transamination of recycled pyruvate in larvae maintained on casein-based diets with or without sucrose. This metabolism is assumed to principally occur in the fat body. Analysis of 13C enriched metabolites released into the hemolymph indicated that isotopic dilution of recycled pyruvate was sufficiently great that further metabolism of the recycled metabolite did not occur to any significant extent under these dietary conditions. The C3/C2 13C-enrichment ratio of alanine, therefore, accurately reflected the relative degree of pyruvate cycling and indicated that the rate of cycling was approximately three-fold lower in larvae maintained on diets lacking sucrose. Moreover, based on the distribution of 13C in trehalose, these larvae displayed significantly greater rates of gluconeogenesis. Enrichment of C1, C2, C5 and C6 were principally due to carboxylation of the isotopically substituted substrate catalyzed by pyruvate carboxylase and, therefore, reflected net carbohydrate synthesis. Trehalose C3 and C4 enrichments were principally due to pyruvate dehydrogenase-catalyzed decarboxylation and reflected incorporation of label following metabolism through the TCA cycle. Pentose cycling following glucogenesis significantly affected the 13C distribution in trehalose in insects on both diets, and the relative intensity of trehalose C6 was, therefore, used for comparing the rates of gluconeogenesis and pyruvate cycling. Based on the 13C enrichment of trehalose C6 relative to C3 of alanine the mean rate of pyruvate cycling relative to the rate of gluconeogenesis was approximately 60% in larvae on the diet lacking sucrose, while the rate of pyruvate cycling in larvae maintained on the diet supplemented with sucrose was greater than the gluconeogenic flux. The results were consistent with the conclusion that pyruvate kinase likely plays an important role in regulating gluconeogenesis in M. sexta larvae.  相似文献   

10.
Manduca sexta L. larvae exhibit broad food acceptance with regard to nutrient content during the first 3 days of the last stadium. Larvae fed diets with a constant combined level of casein and sucrose, but variable ratios, display a linear relationship between protein and carbohydrate intake. Larvae grow best on a diet with equal nutrients, but will consume an excess of one nutrient in order to obtain an adequate amount of the other, as nutrient ratio shifts. Parasitized larvae feed similarly, but the nutrient ratio does not affect growth. Unparasitized larvae regulate intake of protein and carbohydrate when offered choices of protein-biased and carbohydrate-biased diets having combined nutrient levels of 120 g/l, but with variable ratios. Larvae normally consume equal amounts of nutrients, regardless of ratio, and grow similarly. As combined nutrient level is reduced in one diet, larvae abandon regulation and feed randomly. Parasitized larvae offered choice diets with 120 g/l combined nutrients do not regulate nutrient intake. Consumption of nutrients varies widely, but growth is unaffected. Larvae offered choices of diets having equal amounts of casein and sucrose but variable fat (corn oil), fail to regulate fat intake, although both unparasitized and parasitized larvae prefer a diet containing higher fat.  相似文献   

11.
Most studies linking dietary variation with insect fitness focus on a single dietary component and late larval growth. We examined the effects of variation in multiple dietary factors over most life stages of the sphingid moth, Manduca sexta. Larvae received artificial diets in which protein, sucrose, and water content were varied. The relationship between larval size, growth and consumption rates differed significantly across diets. Larvae on control and low-sucrose diets grew most rapidly and attained the largest pupal and adult sizes. Conversely, larvae on low-water and low-protein diets initially grew slowly, but accelerated in the fifth instar and became pupae and adults comparable to control animals in size. There were no fundamental differences in protein:carbohydrate consumption patterns or strategies among experimental diets and larval instars. However, inadequate dietary water appeared to be more important for early than late instar larvae. Larvae on all artificial diets showed increasing fat content throughout all stages, including wandering and metamorphosis. Compensatory feeding among low-water and low-protein larvae was correlated with significantly higher fat content in larvae, pupae and adults, whereas low-sucrose animals were substantially leaner than those on the control diet. These differences may have strong effects on adult physiology, reproduction, and foraging patterns.  相似文献   

12.
The Mediterranean fruit fly [Ceratitis capitata Wiedemann (Diptera: Tephritidae)], or medfly, is mass produced in many facilities throughout the world to supply sterile flies for sterile insect technique programs. Production of sterile males requires large amounts of larval and adult diets. Larval diets comprise the largest economic burdens in the mass production of sterile flies, and are one of the main areas where production costs could be reduced without affecting quality and efficacy. The present study investigated the effect of manipulating diet constituents on larval development and performance. Medfly larvae were reared on diets differing in the proportions of brewer's yeast and sucrose. We studied the effect of such diets on the ability of pupating larvae to accumulate protein and lipids, and on other developmental indicators. Except for diets with a very low proportion of brewer's yeast (e.g., 4%), pupation and adult emergence rates were in general high and satisfactory. The ability of pupating larvae to accumulate lipid reserves and proteins was significantly affected by the sucrose and yeast in the diet, and by the proportion of protein to carbohydrates (P/C). In contrast to previous nutritional studies conducted with other insects, low P/C in medfly larval diets (with excess dietary carbohydrates) resulted in pupating medfly larvae having a relatively reduced load of lipids; medfly larvae protein contents in these diets were, as expected, relatively low. Similarly, high P/C ratios in the diet produced larvae with high protein and lipid contents. Differences with other insects may be due to differential post‐ingestion regulation where a high dietary carbohydrate diet reduces the lipogenic activity of the larvae, and induces a shift from lipid to glucose oxidation. Larvae reared on low P/C diets spent more time foraging in the diet than larvae maintained on a high P/C diet, suggesting a compensatory mechanism to complement nutrient intake. The results suggest that the content of brewer's yeast, the most expensive diet component, could be fine‐tuned without apparently affecting fly quality.  相似文献   

13.
Effects of dietary nicotine and macronutrient ratio on M. sexta larvae were examined. Larvae were fed a carbohydrate-biased, protein-biased or diet having equal amounts of casein and sucrose, with and without nicotine. Without nicotine, larvae displayed compensatory feeding on the low protein diet, but despite consuming more, grew least on this diet. Nicotine at 0.5% had no effect on nutrient consumption. Nicotine at 1.0 and 2.0% reduced overall consumption and thereby also reduced nicotine consumption. Larvae parasitized by C congregata displayed reduced nutrient intake and growth on all diets. Parasitized larvae responded to 1% nicotine similarly to unparasitized larvae. At 0.5% nicotine, they displayed reduced consumption on all diets, possibly due to altered chemoreceptor sensitivity to nicotine. When offered a choice of two diets having different macronutrient ratios, one with and the other without 0.1% nicotine, all larvae preferred the diet lacking nicotine and failed to regulate nutrient intake such that the nutrient intake target, a ratio of nutrients supporting optimal growth, was achieved. Parasitized larvae consumed less nicotine on a fresh weight basis than unparasitized insects, suggesting that the feeding response of parasitized larvae to nicotine minimizes the exposure of nicotine to developing parasites.  相似文献   

14.
In this study we investigated the effects of two naturally occurring beta-carboline alkaloids and two synthetic tricyclic antidepressants on the growth and food consumption of fifth instar larvae of the cabbage looper, Trichoplusia ni Hübner (Lepidoptera: Noctuidae). In artificial diets at high concentrations (3,000 ppm), harmane, amitriptyline, and imipramine reduce growth and feeding; harmane reduced feeding consistently at a lower concentration (200 ppm). In animals other than insects, beta-carboline alkaloids inhibit monoamine oxidase (MAO) activity and thus affect rates of disposition of serotonin and other monoamine neurotransmitters. Because brain serotonin levels are associated with variation in rates of carbohydrate and protein intake in insects, the effects of beta-carboline alkaloid ingestion on dietary self-selection behavior were examined. Choosing between diets lacking carbohydrate but containing protein and diets lacking protein but containing carbohydrate, larvae consumed a greater proportion of diet containing protein but lacking carbohydrate in the presence of harmane than in its absence. These results are consistent with beta-carboline alkaloid-mediated persistence of serotonin in the brain due to MAO inhibition. Alternatively, these results could reflect alkaloid-mediated peripheral inhibition of sucrose taste receptors influencing ingestive behaviors. That beta-carboline alkaloid ingestion is associated with changes in feeding behavior is consistent with a possible defensive role for these compounds in plant foliage.  相似文献   

15.
Consumption of a high energy diet, containing high amounts of saturated fat and refined sugar has been associated with impairment of cognitive function in rodents and humans. We sought to contrast the effect of a high fat/cholesterol, low carbohydrate diet and a low fat, high carbohydrate/sucrose diet, relative to a standard low fat, high carbohydrate minipig diet on spatial cognition with regards to working memory and reference memory in 24 male Göttingen minipigs performing in a spatial hole-board discrimination test. We found that both working memory and reference memory were impaired by both diets relative to a standard minipig diet high in carbohydrate, low in fat and sugar. The different diets did not impact levels of brain-derived neurotrophic factor in brain tissue and neither did they affect circulatory inflammation measured by concentrations of C-reactive protein and haptoglobin in serum. However, higher levels of triglycerides were observed for minipigs fed the diets with high fat/cholesterol, low carbohydrate and low fat, high carbohydrate/sucrose compared to minipigs fed a standard minipig diet. This might explain the observed impairments in spatial cognition. These findings suggest that high dietary intake of both fat and sugar may impair spatial cognition which could be relevant for mental functioning in humans.  相似文献   

16.
Lifetime patterns of carbohydrate and lipid metabolism were compared in starved and sucrose‐fed adults of the parasitoid Macrocentrus grandii (Goidanich) (Hymenoptera: Braconidae). As expected, sucrose‐fed individuals lived longer than did starved individuals. Macrocentrus grandii males and females eclosed with levels of simple storage sugars (presumably primarily trehalose) and glycogen that were below maximum levels recorded from sucrose‐fed parasitoids. Both of these nutrients dropped to very low levels in starved individuals within 4 days post‐emergence and were maintained at high levels in sucrose‐fed individuals throughout their lives. Lipid reserves at emergence represented the highest lipid levels for both sexes in the two diet treatments, with levels declining over the lifetimes of males and females from both diet treatments. Our results therefore suggest that dietary sucrose is used to synthesize trehalose and glycogen, but not lipids in M. grandii. Also, in contrast to the patterns observed for the simple sugars and glycogen, lipid levels in starved individuals did not drop below levels observed in sugar‐fed individuals. The average number of mature eggs carried by females at emergence was 33 and increased to approximately 85 in sucrose‐fed and 130 in starved females by the age of 5 d in the absence of hosts. The egg maturation rate was therefore higher in starved than in sugar‐fed females. Potential explanations for this unexpected result are discussed.  相似文献   

17.
The objective of the present study was to determine the combined effects of dietary protein and carbohydrate sources on total body energy and protein and fat gains as well as on plasma insulin and glucose and tissue lipoprotein lipase activity in male Sprague-Dawley rats fed semipurified diets for 28 days. The diets varied in both protein and carbohydrate sources, namely, casein-cornstarch, casein-sucrose, soy protein isolate (SPI)-cornstarch, SPI-sucrose, cod protein-cornstarch, and cod protein-sucrose. When SPI was combined with cornstarch, lower total body energy and fat gains were observed compared with the combination of either casein and sucrose, casein and cornstarch, or SPI and sucrose. Plasma glucose and insulin concentrations in addition to total and metabolizable energy intake and body weight gain were lower in rats fed the SPI-cornstarch diet than in those fed the casein-sucrose diet. Feeding the SPI-cornstarch diet compared with feeding either the casein-cornstarch or the SPI-sucrose diet also caused lower plasma glucose concentrations and a concomitant trend (p = 0.06) to reduced energy intake and body weight gain. Therefore, the reducing effects of the SPI-cornstarch diet compared with the casein-cornstarch, the casein-sucrose, and the SPI-sucrose diets on body energy and fat gains may result from reductions in energy intake and in plasma glucose concentrations.  相似文献   

18.
The roles of five different dietary fibres (cellulose, agar, guar gum, carrageenan and carboxy-methylcellulose) each as 10% wt/wt added into the diet, affecting the intestinal sugar absorption, blood sugar level and utilization of dextrin were studied in hybrid tilapia, Oreochromis niloticus × O. aureus ; dextrin and glucose were also included in the study as controls for comparison. There were seven dietary groups: each diet was fed to three aquaria each containing 15 fish. The experiment was carried out in a closed circulation, filtered, rearing system for 2 months. The results indicated that the weight gain percentage and food conversion ratio were significantly (P<0.05) lower in tilapia fed fibre-containing diets than those of tilapia fed dextrin or glucose diet. The intestinal absorption of carbohydrate and the blood sugar content of tilapia were low when diets contained fibre, regardless of the source.  相似文献   

19.
Animals, including insects, have the ability to self-select an optimal diet from a choice of two or more incomplete diets that lack an essential nutrient. This paper demonstrates that nymphs of the cockroach Rhyparobia madera also have this ability. The nymphs chose a protein:carbohydrate (P:C) ratio of approximately 25:75 when faced with a choice between one cube of protein (casein) and another of carbohydrate (sucrose). This self-selected ratio was shown to promote growth as well or better than other diets tested. When given a wide range of P:C choices, the R. madera nymphs consistently selected a P:C ratio of approximately 25:75, suggesting that they have the ability to diet-balance. Finally, injections of various serotonergic drugs into self-selecting nymphs influenced their choice of diets. Serotonin promoted a decrease in carbohydrate feeding, while injection of the antagonist -methyltryptophan caused the nymphs to overfeed on carbohydrate. The results suggest that serotonin may help alter the carbohydrate feeding response in cockroaches.  相似文献   

20.
Metabolic resources in adults of holometabolous insects may derive either from larval or adult feeding. In Drosophila melanogaster, reproduction and lifespan are differently affected by larval vs. adult resource availability, and it is unknown how larval vs. adult acquired nutrients are differentially allocated to somatic and reproductive function. Here we describe the allocation of carbon derived from dietary sugar in aging female D. melanogaster. Larval and adult flies were fed diets contrasting in sucrose (13)C/(12)C, from which we determined the extent to which carbon acquired at each stage contributed to adult somatic tissue and to egg manufacture. Dietary sugar is very important in egg provisioning; at every age, roughly one half of the carbon in eggs was derived from sugar, which turned over from predominantly larval to entirely adult dietary sources. Sucrose provided approximately 40% of total somatic carbon, of which adult dietary sucrose came to supply approximately 75%. Unlike in eggs, however, adult acquired sucrose did not entirely replace the somatic carbon from larvally acquired sucrose. Because carbon from larval sucrose appears to be fairly "replaceable", larval sucrose cannot be a limiting substrate in resource allocation between reproduction and lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号