首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SH3 domain has often been used as a model for protein folding due to its typical two-state behaviour. However, recent experimental data at low pH as well as molecular dynamic simulations have indicated that the folding process of SH3 probably is more complicated, and may involve intermediate states. Using both kinetic and equilibrium measurements we have obtained evidence that under native-like conditions the folding of the spectrin SH3 domain does not follow a classic two-state behaviour. The curvature we observed in the Chevron plots is a strong indication of a non-linear activation energy relationship due to the presence of high-energy intermediates. In addition, circular dichroism measurements indicated that refolding after thermal denaturation did not follow the same pattern as thermal unfolding but rather implied less cooperativity and that the refolding transition increased with increasing protein concentration. Further, NMR experiments indicated that upon refolding the SH3 domain gave rise to more than one conformation. Therefore, our results suggest that the folding of the SH3 domain of αII-spectrin does not follow a classical two-state process under high-salt conditions and neutral pH. Heterogeneous folding pathways, which can include folding intermediates as well as misfolded intermediates, might give a more reasonable insight into the folding behaviour of the αII-spectrin SH3 domain.  相似文献   

2.
We present a verified computational model of the SH3 domain transition state (TS) ensemble. This model was built for three separate SH3 domains using experimental phi-values as structural constraints in all-atom protein folding simulations. While averaging over all conformations incorrectly considers non-TS conformations as transition states, quantifying structures as pre-TS, TS, and post-TS by measurement of their transmission coefficient ("probability to fold", or p(fold)) allows for rigorous conclusions regarding the structure of the folding nucleus and a full mechanistic analysis of the folding process. Through analysis of the TS, we observe a highly polarized nucleus in which many residues are solvent-exposed. Mechanistic analysis suggests the hydrophobic core forms largely after an early nucleation step. SH3 presents an ideal system for studying the nucleation-condensation mechanism and highlights the synergistic relationship between experiment and simulation in the study of protein folding.  相似文献   

3.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

4.
DOCK180 family proteins are Rho guanine nucleotide exchange factors. DOCK1‐5 contains an N‐terminal SH3 domain implicated in their autoinhibition. Release of the closed conformation requires the interaction between SH3 and engulfment and cell motility (ELMO). Here, we solved the solution structure of DOCK180 SH3 domain, which shares similar target binding features with the SH3 domain of DOCK2. The conserved N‐terminal extension packs with the SH3 core domain and forms a new target binding site distinct from the canonical “PxxP” site. Our results demonstrate that the bidentate target binding mode of DOCK180 SH3 domain might be a general feature in all DOCK proteins. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The three-dimensional structure of the N-terminal SH3 domain (residues 583–660) of murine Vav, which contains a tetra-proline sequence (Pro 607-Pro 610), was determined by NMR. The solution structure of the SH3 domain shows a typical SH3 fold, but it exists in two conformations due to cis-trans isomerization at the Gly614-Pro615 bond. The NMR structure of the P615G mutant, where Pro615 is replaced by glycine, reveals that the tetra-proline region is inserted into the RT-loop and binds to its own SH3 structure. The C-terminal SH3 domain of Grb2 specifically binds to the trans form of the N-terminal SH3 domain of Vav. The surface of Vav N-terminal SH3 which binds to Grb2 C-terminal SH3 was elucidated by chemical shift mapping experiments using NMR. The surface does not involve the tetra-proline region but involves the region comprising the n-src loop, the N-terminal and the C-terminal regions. This surface is located opposite to the tetra-proline containing region, consistent with that of our previous mutagenesis studies.  相似文献   

6.
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result.  相似文献   

7.
We have characterized the thermodynamic stability of the SH3 domain from the Saccharomyces cerevisiae Abp1p protein and found it to be relatively low compared to most other SH3 domains, with a Tm of 60 degrees C and a deltaGu of 3.08 kcal/mol. Analysis of a large alignment of SH3 domains led to the identification of atypical residues at eight positions in the wild-type Abp1p SH3 domain sequence that were subsequently replaced by the residue seen most frequently at that position in the alignment. Three of the eight mutants constructed in this way displayed increases in Tm ranging from 8 to 15 degrees C with concomitant increases in deltaGu of up to 1.4 kcal/mol. The effects of these substitutions on folding thermodynamics and kinetics were entirely additive, and a mutant containing all three was dramatically stabilized with a Tm greater than 90 degrees C and a deltaGu more than double that of the wild-type domain. The folding rate of this hyperstable mutant was 10-fold faster than wild-type, while its unfolding rate was fivefold slower. All of the stabilized mutants were still able to bind a target peptide with wild-type affinity. We have analyzed the stabilizing amino acid substitutions isolated in this study and several other similar sequence alignment based studies. In approximately 25% of cases, increased stability can be explained by enhanced propensity of the substituted residue for the local backbone conformation at the mutagenized site.  相似文献   

8.
The presence of residual structure in the unfolded state of the N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) has been investigated using far- and near-UV circular dichroism (CD), fluorescence, and NMR spectroscopy. The unfolded (U(exch)) state of the drkN SH3 domain is significantly populated and exists in equilibrium with the folded (F(exch)) state under non-denaturing conditions near physiological pH. Denaturation experiments have been performed on the drkN SH3 domain in order to monitor the change in ellipticity, fluorescence intensity, and chemical shift between the U(exch) state and chemically or thermally denatured states. Differences between the unfolded and chemically or thermally denatured states highlight specific areas of residual structure in the unfolded state that are cooperatively disrupted upon denaturation. Results provide evidence for cooperative interactions in the unfolded state involving residues of the central beta-sheet, particularly the beta4 strand. Denaturation as well as hydrogen-exchange experiments demonstrate a non-native burial of the Trp ring within this "cooperative" core of the unfolded state. These findings support the presence of non-native hydrophobic clusters, organised by Trp rings, within disordered states.  相似文献   

9.
SH3 domains are a conserved feature of many nonreceptor protein tyrosine kinases, such as Hck, and often function in substrate recruitment and regulation of kinase activity. SH3 domains modulate kinase activity by binding to polyproline helices (PPII helix) either intramolecularly or in target proteins. The preponderance of bimolecular and distal interactions between SH3 domains and PPII helices led us to investigate whether proximal placement of a PPII helix relative to an SH3 domain would result in tight, intramolecular binding. We have fused the PPII helix region of human GAP to the C-terminus of Hck SH3 and expressed the recombinant fusion protein in Eschericheria coli. The fusion protein, SH3Hck: PPIIhGAP, folded spontaneously into a structure in which the PPII helix was bound intramolecularly to the hydrophobic crevice of the SH3 domain. The SH3Hck: PPIIhGAP fusion protein is useful for investigating SH3: PPII helix interactions, for studying concepts in protein folding and design, and may represent a protein structural motif that is widely distributed in nature.  相似文献   

10.
The folding thermodynamics and kinetics of the alpha-spectrin SH3 domain with a redesigned hydrophobic core have been studied. The introduction of five replacements, A11V, V23L, M25V, V44I and V58L, resulted in an increase of 16% in the overall volume of the side-chains forming the hydrophobic core but caused no remarkable changes to the positions of the backbone atoms. Judging by the scanning calorimetry data, the increased stability of the folded structure of the new SH3-variant is caused by entropic factors, since the changes in heat capacity and enthalpy upon the unfolding of the wild-type and mutant proteins were identical at 298 K. It appears that the design process resulted in an increase in burying both the hydrophobic and hydrophilic surfaces, which resulted in a compensatory effect upon the changes in heat capacity and enthalpy. Kinetic analysis shows that both the folding and unfolding rate constants are higher for the new variant, suggesting that its transition state becomes more stable compared to the folded and unfolded states. The phi(double dagger-U) values found for a number of side-chains are slightly lower than those of the wild-type protein, indicating that although the transition state ensemble (TSE) did not change overall, it has moved towards a more denatured conformation, in accordance with Hammond's postulate. Thus, the acceleration of the folding-unfolding reactions is caused mainly by an improvement in the specific and/or non-specific hydrophobic interactions within the TSE rather than by changes in the contact order. Experimental evidence showing that the TSE changes globally according to its hydrophobic content suggests that hydrophobicity may modulate the kinetic behaviour and also the folding pathway of a protein.  相似文献   

11.
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. CD2AP interacts, as an adaptor protein, with different natural targets, such as CD2, nefrin, c-Cbl and podocin. These proteins are believed to interact to one of the three SH3 domains that are positioned in the N-terminal region of CD2AP. To understand the network of interactions between the natural targets and the three SH3 domains (SH3-A, B and C), we have started to determine the structures of the individual SH3 domains. Here we present the high-resolution structure of the SH3-C domain derived from NMR data. Full backbone and side-chain assignments were obtained from triple-resonance spectra. The structure was determined from distance restraints derived from high-resolution 600 and 800 MHz NOESY spectra, together with phi and psi torsion angle restraints based on the analysis of 1HN, 15N, 1Hα, 13Cα, 13CO and 13Cβ chemical shifts. Structures were calculated using CYANA and refined in water using RECOORD. The three-dimensional structure of CD2AP SH3-C contains all the features that are typically found in other SH3 domains, including the general binding site for the recognition of polyproline sequences.  相似文献   

12.
A structural-dynamic study of one of the chimeric proteins (SHA) belonging to the SH3-Bergerac family and containing the KATANGKTYE sequence instead of the N47D48 β-turn in the spectrin SH3-domain was carried out by high resolution NMR spectroscopy. The spatial structure of the protein was determined and its dynamics in solution was investigated on the basis of the NMR data. The elongation of the SHA polypeptide chain in comparison with the WT-SH3 original protein (by ~17%) exerts practically no effect on the general topology of the molecule. The presence of a stable β-hairpin in the region of insertion was confirmed. This hairpin was shown to have a higher mobility in comparison with other regions of the protein.  相似文献   

13.
14.
Bin1/M-amphiphysin-II is an amphiphysin-II isoform highly expressed in transverse tubules of adult striated muscle and is implicated in their biogenesis. Bin1 contains a basic unique amino-acid sequence, Exon10, which interacts with certain phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), to localize to membranes. Here we found that Exon10 also binds to the src homology 3 (SH3) domain of Bin1 itself, and hence blocks the binding of the SH3 domain to its canonical PxxP ligands, including dynamin. This blockage was released by addition of PI(4,5)P(2) in vitro or in cells overexpressing phosphatidylinositol 4-phosphate 5-kinase. The Exon10-binding interface of the Bin1 SH3 domain largely overlapped with its PxxP-binding interface. We also show that the PLCdelta pleckstrin homology domain, another PI(4,5)P(2)-binding module, cannot substitute for Exon10 in Bin1 function in transverse tubule formation, and suggest the importance of the dual biochemical properties of Exon10 in myogenesis. Our results exemplify a novel mechanism of SH3 domain regulation, and suggest that the SH3-mediated protein-protein interactions of Bin1 are regulated by Exon10 so that it may only occur when Bin1 localizes to certain submembrane areas.  相似文献   

15.
The SH3 domain folding transition state structure contains two well-ordered turn regions, known as the diverging turn and the distal loop. In the Src SH3 domain transition state, these regions are stabilized by a hydrogen bond between Glu30 in the diverging turn and Ser47 in the distal loop. We have examined the effects on folding kinetics of amino acid substitutions at the homologous positions (Glu24 and Ser41) in the Fyn SH3 domain. In contrast to most other folding kinetics studies which have focused primarily on non-disruptive substitutions with Ala or Gly, here we have examined the effects of substitutions with diverse amino acid residues. Using this approach, we demonstrate that the transition state structure is generally tolerant to amino acid substitutions. We also uncover a unique role for Ser at position 41 in facilitating folding of the distal loop, which can only be replicated by Asp at the same position. Both these residues appear to accelerate folding through the formation of short-range side-chain to backbone hydrogen bonds. The folding of the diverging turn region is shown to be driven primarily by local interactions. The diverging turn and distal loop regions are found to interact in the transition state structure, but only in the context of particular mutant backgrounds. This work demonstrates that studying the effects of a variety of amino acid substitutions on protein folding kinetics can provide unique insights into folding mechanisms which cannot be obtained by standard Phi value analysis.  相似文献   

16.
The SH3 domain, comprised of approximately 60 residues, is found within a wide variety of proteins, and is a mediator of protein-protein interactions. Due to the large number of SH3 domain sequences and structures in the databases, this domain provides one of the best available systems for the examination of sequence and structural conservation within a protein family. In this study, a large and diverse alignment of SH3 domain sequences was constructed, and the pattern of conservation within this alignment was compared to conserved structural features, as deduced from analysis of eighteen different SH3 domain structures. Seventeen SH3 domain structures solved in the presence of bound peptide were also examined to identify positions that are consistently most important in mediating the peptide-binding function of this domain. Although residues at the two most conserved positions in the alignment are directly involved in peptide binding, residues at most other conserved positions play structural roles, such as stabilizing turns or comprising the hydrophobic core. Surprisingly, several highly conserved side-chain to main-chain hydrogen bonds were observed in the functionally crucial RT-Src loop between residues with little direct involvement in peptide binding. These hydrogen bonds may be important for maintaining this region in the precise conformation necessary for specific peptide recognition. In addition, a previously unrecognized yet highly conserved beta-bulge was identified in the second beta-strand of the domain, which appears to provide a necessary kink in this strand, allowing it to hydrogen bond to both sheets comprising the fold.  相似文献   

17.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

18.

Background

CASKIN2 is a neuronal signaling scaffolding protein comprised of multiple ankyrin repeats, two SAM domains, and one SH3 domain. The CASKIN2 SH3 domain for an NMR structural determination because its peptide-binding cleft appeared to deviate from the repertoire of aromatic enriched amino acids that typically bind polyproline-rich sequences.

Results

The structure demonstrated that two non-canonical basic amino acids (K290/R319) in the binding cleft were accommodated well in the SH3 fold. An K290Y/R319W double mutant restoring the typical aromatic amino acids found in the binding cleft resulted in a 20 °C relative increase in the thermal stability. Considering the reduced stability, we speculated that the CASKIN2 SH3 could be a nonfunctional remnant in this scaffolding protein.

Conclusions

While the NMR structure demonstrates that the CASKIN2 SH3 domain is folded, its cleft has suffered two substitutions that prevent it from binding typical polyproline ligands. This observation led us to additionally survey and describe other SH3 domains in the Protein Data Bank that may have similarly lost their ability to promote protein-protein interactions.
  相似文献   

19.
SH3 Domains provide interesting targets for investigations of protein structure and dynamics because of their compact size and importance for signal transduction. The present review summarizes recent research investigating SH3 domain structure and dynamics, the discovery of novel SH3 domains, the role of SH3 domains in disease, and progress in targeting SH3 domains for the development of novel therapeutics. Particular emphasis is placed on the unfolding/refolding characteristics of SH3 domains and the potential importance of these processes for regulation of signal transduction.  相似文献   

20.
Amyloid formation is associated with structural changes of native polypeptides to monomeric intermediate states and their self-assembly into insoluble aggregates. Characterizations of the amyloidogenic intermediate state are, therefore, of great importance in understanding the early stage of amyloidogenesis. Here, we present NMR investigations of the structural and dynamic properties of the acid-unfolded amyloidogenic intermediate state of the phosphatidylinositol 3-kinase (PI3K) SH3 domain--a model peptide. The monomeric amyloidogenic state of the SH3 domain studied at pH 2.0 (35 degrees C) was shown to be substantially disordered with no secondary structural preferences. (15)N NMR relaxation experiments indicated that the unfolded polypeptide is highly flexible on a subnanosecond timescale when observed under the amyloidogenic condition (pH 2.0, 35 degrees C). However, more restricted motions were detected in residues located primarily in the beta-strands as well as in a loop in the native fold. In addition, nonnative long-range interactions were observed between the residues with the reduced flexibility by paramagnetic relaxation enhancement (PRE) experiments. These indicate that the acid-unfolded state of the SH3 domain adopts a partly folded conformation through nonnative long-range contacts between the dynamically restricted residues at the amyloid-forming condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号