首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

2.
Mitochondria are dynamic organelles crucial for cell function and survival implicated in oxidative energy production whose central functions are tightly controlled by lipids. StarD7 is a lipid transport protein involved in the phosphatidylcholine (PC) delivery to mitochondria. Previous studies have shown that StarD7 knockdown induces alterations in mitochondria and endoplasmic reticulum (ER) with a reduction in PC content, however whether StarD7 modulates mitochondrial dynamics remains unexplored. Here, we generated HTR-8/SVneo stable cells expressing the precursor StarD7.I and the mature processed StarD7.II isoforms. We demonstrated that StarD7.I overexpression altered mitochondrial morphology increasing its fragmentation, whereas no changes were observed in StarD7.II-overexpressing cells compared to the control (Ct) stable cells. StarD7.I (D7.I) stable cells were able to transport higher fluorescent PC analog to mitochondria than Ct cells, yield mitochondrial fusions, maintained the membrane potential, and produced lower levels of reactive oxygen species (ROS). Additionally, the expression of Dynamin Related Protein 1 (Drp1) and Mitofusin (Mfn2) proteins were increased, whereas the amount of Mitofusin 1 (Mfn1) decreased. Moreover, transfections with plasmids encoding Drp1-K38A, Drp1-S637D or Drp1-S637A mutants indicated that mitochondrial fragmentation in D7.I cells occurs in a fission-dependent manner via Drp1. In contrast, StarD7 silencing decreased Mfn1 and Mfn2 fusion proteins without modification of Drp1 protein level. These cells increased ROS levels and presented donut-shape mitochondria, indicative of metabolic stress. Altogether our findings provide novel evidence indicating that alterations in StarD7.I expression produce significant changes in mitochondrial morphology and dynamics.  相似文献   

3.
Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.  相似文献   

4.
Huang P  Galloway CA  Yoon Y 《PloS one》2011,6(5):e20655
Mitochondria in mammals are organized into tubular networks that undergo frequent shape change. Mitochondrial fission and fusion are the main components mediating the mitochondrial shape change. Perturbation of the fission/fusion balance is associated with many disease conditions. However, underlying mechanisms of the fission/fusion balance are not well understood. Mitochondrial fission in mammals requires the dynamin-like protein DLP1/Drp1 that is recruited to the mitochondrial surface, possibly through the membrane-anchored protein Fis1 or Mff. Additional dynamin-related GTPases, mitofusin (Mfn) and OPA1, are associated with the outer and inner mitochondrial membranes, respectively, and mediate fusion of the respective membranes. In this study, we found that two heptad-repeat regions (HR1 and HR2) of Mfn2 interact with each other, and that Mfn2 also interacts with the fission protein DLP1. The association of the two heptad-repeats of Mfn2 is fusion inhibitory whereas a positive role of the Mfn2/DLP1 interaction in mitochondrial fusion is suggested. Our results imply that the differential binding of Mfn2-HR1 to HR2 and DLP1 regulates mitochondrial fusion and that DLP1 may act as a regulatory factor for efficient execution of both fusion and fission of mitochondria.  相似文献   

5.
Mitochondrial morphology is dynamic and controlled by coordinated fusion and fission pathways. The role of mitochondrial chaperones in mitochondrial morphological changes and pathology is currently unclear. Here we report that altered levels of DnaJA3 (Tid1/mtHsp40) a mitochondrial member of the DnaJ protein family, and heat shock protein (Hsp) co-chaperone of matrix 70 kDa Hsp70 (mtHsp70/mortalin/HSPA9), induces mitochondrial fragmentation. Suppression of DnaJA3 induced mitochondrial fragmentation in HeLa cells. Elevated levels of DnaJA3 in normal Hs68 fibroblast cells and HeLa, SKN-SH, U87 and U251 cancer cell lines induces mitochondrial fragmentation. Mitochondrial fragmentation induction was not observed in HeLa cells when other DnaJA family members, or mitochondrial DnaJ protein HSC20, were ectopically expressed, indicating that the effects on mitochondrial morphology were specific to DnaJA3. We show that the DnaJ domain (amino acids 88-168) of DnaJA3 is sufficient for the induction of mitochondrial fragmentation. Furthermore, an H121Q point mutation of the DnaJ domain, which abrogates interaction and activation of mtHsp70 ATPase, eliminates fragmentation induced by DnaJA3. This suggests that DnaJA3 interaction with mtHsp70 may be critical in mitochondrial morphological changes. DnaJA3-induced mitochondrial fragmentation was dependent on fission factor dynamin-related protein 1 (Drp1). Ectopic expression of the mitofusins (Mfn1 and Mfn2), however, does not rescue DnaJA3-induced mitochondrial fragmentation. Lastly, elevated levels of DnaJA3 inducing mitochondrial fragmentation were associated with reduction in cell viability. Taken together, elevated DnaJA3 induces Drp1-depedendent mitochondrial fragmentation and decreased cell viability.  相似文献   

6.
Research on mitochondrial fusion and fission (mitochondrial dynamics) has gained much attention in recent years, as it is important for understanding many biological processes, including the maintenance of mitochondrial functions, apoptosis, and cancer. The rate of mitochondrial biosynthesis and degradation can affect various aspects of tumor progression. However, the role of mitochondrial dynamics in melanoma progression remains controversial and requires a mechanistic understanding to target the altered metabolism of cancer cells. Therefore, in our study, we disrupted mitochondrial fission with mdivi-1, the reported inhibitor of dynamin related protein 1 (Drp1), and knocked down Drp1 and Mfn2 to evaluate the effects of mitochondrial dynamic alterations on melanoma cell progression. Our confocal study results showed that mitochondrial fission was inhibited both in mdivi-1 and in Drp1 knockdown cells and, in parallel, mitochondrial fusion was induced. We also found that mitochondrial fission inhibition by mdivi-1 induced cell death in melanoma cells. However, silencing Drp1 and Mfn2 did not affect cell viability, but enhanced melanoma cell migration. We further show that dysregulated mitochondrial fusion by Mfn2 knockdowns suppressed the oxygen consumption rate of melanoma cells. Together, our findings suggest that mitochondrial dynamic alterations regulate melanoma cell migration and progression.  相似文献   

7.
BackgroundDoxorubicin (DOX) is an anti-tumor agent that is widely used in clinical setting for cancer treatment. The application of the DOX, however, is limited by its cardiac toxicity which can induce heart failure through an undefined mechanism. Mitofusin 2 (Mfn2) is a mitochondrial GTPase fusion protein that is located on the outer membrane of mitochondria (OMM). The Mfn2 plays an important role in mitochondrial fusion and fission. The aim of this study is to identify the role of the Mfn2 in DOX-induced cardiomyocyte apoptosis.MethodsCultured neonatal rat cardiomyocytes were used in this study. Mfn2 expression in cardiomyocytes was determined after the cardiomyocytes were challenged with DOX. Cardiomyocyte mitochondrial fission, mitochondrial reactive oxygen species (ROS) production was assessed with mitochondrial fragmentation and MitoSOX fluorescence probe, respectively. Cardiomyocyte apoptosis was determined with caspase3 activity and TUNEL staining.ResultsChallenging of the cardiomyocytes with DOX resulted in increasing in cardiomyocyte oxidative stress and apoptosis. In addition, levels of Mfn2 in cardiomyocytes were decreased after the cells were challenged with DOX which was associated with increased mitochondrial fission (fragmentation) and mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 attenuated the DOX-induced increase in mitochondrial fission and prevented cardiomyocyte mitochondrial ROS production. An increase in cardiomyocyte levels of Mfn2 or pretreatment of cardiomyocytes with an anti-oxidant, Mito-tempo, also prevented the DOX-induced cardiomyocyte apoptosis.ConclusionOur results indicate that DOX results in a decreased cardiomyocyte Mfn2 expression which promotes mitochondrial fission and ROS production further leads to cardiomyocyte apoptosis.  相似文献   

8.
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion.  相似文献   

9.
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and mitochondrial structural disarray in brains of hypertensive rats with hypertension-induced brain injury (encephalopathy). We found that activation of protein kinase Cδ (PKCδ) induced aberrant mitochondrial fragmentation and impaired mitochondrial function in cultured SH-SY5Y neuronal cells and in this rat model of hypertension-induced encephalopathy. Immunoprecipitation studies indicate that PKCδ binds Drp1, a major mitochondrial fission protein, and phosphorylates Drp1 at Ser 579, thus increasing mitochondrial fragmentation. Further, we found that Drp1 Ser 579 phosphorylation by PKCδ is associated with Drp1 translocation to the mitochondria under oxidative stress. Importantly, inhibition of PKCδ, using a selective PKCδ peptide inhibitor (δV1-1), reduced mitochondrial fission and fragmentation and conferred neuronal protection in vivo and in culture. Our study suggests that PKCδ activation dysregulates the mitochondrial fission machinery and induces aberrant mitochondrial fission, thus contributing to neurological pathology.  相似文献   

10.
哺乳动物细胞线粒体融合-分裂与钙离子信号的关系   总被引:2,自引:0,他引:2  
Zhao GJ  Lu ZQ  Yao YM 《生理科学进展》2010,41(3):171-176
线粒体是一种高度动态的细胞器,通过融合和分裂两个相反的过程来维持正常的形态结构。在哺乳动物中,多种因素影响线粒体的融合-分裂的平衡,但现已明确,线粒体融合的主要调节因子为Mfn1/2、OPA1,介导线粒体分裂的主要调节因子为Drp1、Fis1。新近研究发现,线粒体融合-分裂平衡的紊乱将导致线粒体结构和在细胞内分布的异常,进而影响细胞和线粒体对钙离子信号的反应;同时,钙离子也可通过多种机制影响线粒体的形态结构与分布。  相似文献   

11.
12.
Obstructive sleep apnoea (OSA) characterized by intermittent hypoxia (IH) is closely associated with cardiovascular diseases. IH confers cardiac injury via accelerating cardiomyocyte apoptosis, whereas the underlying mechanism has remained largely enigmatic. This study aimed to explore the potential mechanisms involved in the IH‐induced cardiac damage performed with the IH‐exposed cell and animal models and to investigate the protective effects of haemin, a potent haeme oxygenase‐1 (HO‐1) activator, on the cardiac injury induced by IH. Neonatal rat cardiomyocyte (NRC) was treated with or without haemin before IH exposure. Eighteen male Sprague‐Dawley (SD) rats were randomized into three groups: control group, IH group (PBS, ip) and IH + haemin group (haemin, 4 mg/kg, ip). The cardiac function was determined by echocardiography. Mitochondrial fission was evaluated by Mitotracker staining. The mitochondrial dynamics‐related proteins (mitochondrial fusion protein, Mfn2; mitochondrial fission protein, Drp1) were determined by Western blot. The apoptosis of cardiomyocytes and heart sections was examined by TUNEL. IH regulated mitochondrial dynamics‐related proteins (decreased Mfn2 and increased Drp1 expressions, respectively), thereby leading to mitochondrial fragmentation and cell apoptosis in cardiomyocytes in vitro and in vivo, while haemin‐induced HO‐1 up‐regulation attenuated IH‐induced mitochondrial fragmentation and cell apoptosis. Moreover, IH resulted in left ventricular hypertrophy and impaired contractile function in vivo, while haemin ameliorated IH‐induced cardiac dysfunction. This study demonstrates that pharmacological activation of HO‐1 pathway protects against IH‐induced cardiac dysfunction and myocardial fibrosis through the inhibition of mitochondrial fission and cell apoptosis.  相似文献   

13.
Adrenergic stimulation of brown adipocytes (BA) induces mitochondrial uncoupling, thereby increasing energy expenditure by shifting nutrient oxidation towards thermogenesis. Here we describe that mitochondrial dynamics is a physiological regulator of adrenergically‐induced changes in energy expenditure. The sympathetic neurotransmitter Norepinephrine (NE) induced complete and rapid mitochondrial fragmentation in BA, characterized by Drp1 phosphorylation and Opa1 cleavage. Mechanistically, NE‐mediated Drp1 phosphorylation was dependent on Protein Kinase‐A (PKA) activity, whereas Opa1 cleavage required mitochondrial depolarization mediated by FFAs released as a result of lipolysis. This change in mitochondrial architecture was observed both in primary cultures and brown adipose tissue from cold‐exposed mice. Mitochondrial uncoupling induced by NE in brown adipocytes was reduced by inhibition of mitochondrial fission through transient Drp1 DN overexpression. Furthermore, forced mitochondrial fragmentation in BA through Mfn2 knock down increased the capacity of exogenous FFAs to increase energy expenditure. These results suggest that, in addition to its ability to stimulate lipolysis, NE induces energy expenditure in BA by promoting mitochondrial fragmentation. Together these data reveal that adrenergically‐induced changes to mitochondrial dynamics are required for BA thermogenic activation and for the control of energy expenditure.  相似文献   

14.
15.
Li WW  Zhu M  Lv CZ 《生理科学进展》2011,42(5):347-352
线粒体是一种处于高度运动状态的细胞器,频繁地出现分裂和融合,线粒体分裂和融合的动态过程被称为线粒体动力学。对于神经元来说,线粒体的动力学过程具有十分重要的生物学意义。已知线粒体融合介导蛋白的功能缺失性突变可以导致常染色体显性遗传性视神经萎缩和Charcot-Marie-Tooth病等神经变性疾病。近来发现,在迟发性神经变性疾病中,线粒体动力学的改变也具有重要地位。本文将在线粒体动力学的分子调控以及与细胞死亡的关系、在神经变性疾病中的地位等方面综述这一领域的最新进展。  相似文献   

16.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   

17.
The mitochondrial fusion factors mitofusins 1 and 2 (Mfn1 and Mfn2) and the fission factor dynamin-related protein 1 (Drp1) were found to be highly expressed in the pubertal and adult rat testis by Northern blot analysis. Immunohistochemistry using specific antisera to Mfn2 and Drp1 revealed a pronounced expression of the fusion and fission factors in the round and elongating spermatids in the seminiferous tubules, suggesting that at precise steps of spermiogenesis (i.e., steps 8-12), spermatid mitochondria are rapidly homogenized by frequent fusion and division. Although physiological relevance of this phenomenon remains to be clarified, a role is proposed for it as an effective means of achieving complete and homogeneous ubiquitination of mitochondria, which has recently been demonstrated to be a mechanism for the elimination of paternal mitochondria during fertilization, based on the fact that the timing of expression of Mfn2 and Drp1 coincides well with that reported for a spermatid-specific ubiquitin-conjugating enzyme.  相似文献   

18.
RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with “bulge”-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous “fusion” and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.  相似文献   

19.
In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation– or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission.  相似文献   

20.
Mitochondria are present as tubular organelles in neuronal projections. Here, we report that mitochondria undergo profound fission in response to nitric oxide (NO) in cortical neurons of primary cultures. Mitochondrial fission by NO occurs long before neurite injury and neuronal cell death. Furthermore, fission is accompanied by ultrastructural damage of mitochondria, autophagy, ATP decline and generation of free radicals. Fission is occasionally asymmetric and can be reversible. Strikingly, mitochondrial fission is also an early event in ischemic stroke in vivo. Mitofusin 1 (Mfn1) or dominant-negative Dynamin related protein 1 (Drp1(K38A)) inhibits mitochondrial fission induced by NO, rotenone and Amyloid-beta peptide. Conversely, overexpression of Drp1 or Fis1 elicits fission and increases neuronal loss. Importantly, NO-induced neuronal cell death was mitigated by Mfn1 and Drp1(K38A). Thus, persistent mitochondrial fission may play a causal role in NO-mediated neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号