首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sodium-amino acid cotransport by type II alveolar epithelial cells   总被引:2,自引:0,他引:2  
Type II alveolar epithelial cell monolayers have been shown to actively transport sodium (Na+). Coupling to amino acid uptake could be an important mechanism for Na+ entry into these cells. This study demonstrates the presence of such a coupled cotransport mechanism in the plasma membrane of isolated type II cells by use of the nonmetabolizable amino acid analogue alpha-methylaminoisobutyric acid (MeAIB). Transport of MeAIB in 137 mM Na+ is saturable, with the uptake constant (Vmax) equaling 13.9 pmol X mg prot-1 X s-1 and the Michaelis-Menten constant (Km) equaling 0.13 mM. In the presence of Na+, MeAIB is accumulated against a concentration gradient. MeAIB uptake in the absence of Na+ is linear with MeAIB concentration, as expected for simple diffusion. The Hill coefficient for Na+-MeAIB cotransport is 1.11, suggesting a 1:1 stoichiometry. Proline inhibits Na+-MeAIB cotransport, with Ki equaling 0.5 mM. These findings suggest that Na+-amino acid cotransport may be an important pathway for Na+ (and/or amino acid) uptake into type II alveolar epithelial cells.  相似文献   

2.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

3.
Sodium-dependent lysine flux across bullfrog alveolar epithelium   总被引:2,自引:0,他引:2  
Amino acid transport across the alveolar epithelial barrier was studied by measuring radiolabeled lysine fluxes across bullfrog lungs in an Ussing chamber. In the absence of a transmural electrical gradient, L-[14C]lysine was instilled into the upstream reservoir and the rate of appearance of the radiolabel in the downstream reservoir was determined. Two lungs from the same animal were used simultaneously to determine tracer fluxes both into and out of the alveolar bath. Results showed that the radiolabel flux measured in the alveolar to the pleural direction was greater than that measured in the opposite direction in the presence of sodium in the bathing fluids. The net flux of L-[14C]lysine was saturable with [Na+], with an apparent transport coefficient (Kt) of 28 mM for Na+. Hill analysis of [14C]lysine flux vs. [Na+] indicated a coupling ratio of 1:1 between sodium and radiolabeled L-lysine. Total L-lysine flux as a function of [L-lysine] was also saturable, with Kt of 7.3 mM for L-lysine. Ouabain significantly decreased absorptive (alveolar-to-pleural) radiolabel flux, while slightly increasing the flux observed in the opposite direction. L-leucine completely inhibited absorptive net flux of L-[14C]lysine. alpha-Methylaminoisobutyric acid (MeAIB), on the other hand, only slightly reduced net flux of L-[14C]lysine from the control value. The presence of a net absorptive, Na+-dependent amino acid flux across the alveolar epithelial barrier indicates that the tissue is capable of removing amino acids and sodium from the alveolar fluid by a coupled cotransport mechanism, which may be important for both protein metabolism and fluid balance by alveolar epithelium.  相似文献   

4.
The properties of system y(+)L-mediated transport were investigated on rat system y(+)L transporter, ry(+)LAT1, coexpressed with the heavy chain of cell surface antigen 4F2 in Xenopus oocytes. ry(+)LAT1-mediated transport of basic amino acids was Na(+)-independent, whereas that of neutral amino acids, although not completely, was dependent on Na(+), as is typical of system y(+)L-mediated transport. In the absence of Na(+), lowering of pH increased leucine transport, without affecting lysine transport. Therefore, it is proposed that H(+), besides Na(+) and Li(+), is capable of supporting neutral amino acid transport. Na(+) and H(+) augmented leucine transport by decreasing the apparent K(m) values, without affecting the V(max) values. We demonstrate that although ry(+)LAT1-mediated transport of [(14)C]l-leucine was accompanied by the cotransport of (22)Na(+), that of [(14)C]l-lysine was not. The Na(+) to leucine coupling ratio was determined to be 1:1 in the presence of high concentrations of Na(+). ry(+)LAT1-mediated leucine transport, but not lysine transport, induced intracellular acidification in Chinese hamster ovary cells coexpressing ry(+)LAT1 and 4F2 heavy chain in the absence of Na(+), but not in the presence of physiological concentrations of Na(+), indicating that cotransport of H(+) with leucine occurred in the absence of Na(+). Therefore, for the substrate recognition by ry(+)LAT1, the positive charge on basic amino acid side chains or that conferred by inorganic monovalent cations such as Na(+) and H(+), which are cotransported with neutral amino acids, is presumed to be required. We further demonstrate that ry(+)LAT1, due to its peculiar cation dependence, mediates a heteroexchange, wherein the influx of substrate amino acids is accompanied by the efflux of basic amino acids.  相似文献   

5.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

6.
In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal inflammation, we used rat intestinal epithelial cell (IEC-18) monolayers to determine the mechanism of regulation of Na-alanine cotransport (alanine, serine, cysteine transporter 1: ASCT1) by LTD4. Na-alanine cotransport was inhibited by LTD4 in IEC-18 cells. The mechanism of inhibition of ASCT1 (solute carrier, SLC1A4) by LTD4 is secondary to a decrease in the affinity of the cotransporter for alanine without a significant change in cotransporter numbers and is not secondary to an alteration in the Na+ extruding capacity of the cells. Real-time quantitative PCR and Western blot analysis results indicate that ASCT1 message and protein levels are also unchanged in LTD4-treated IEC-18 cells. These results indicate that LTD4 inhibits Na-dependent neutral amino acid cotransport in IEC. The mechanism of inhibition is secondary to a decrease in the affinity for alanine, which is identical to that seen in villus cells from the chronically inflamed rabbit small intestine, where LTD4 levels are significantly increased.  相似文献   

7.
Cationic amino acid transport in primary cultured rat pneumocytes exhibiting characteristics of alveolar epithelial type I-like cells are described. Asymmetry and activator ion dependency of (3)H-L-arginine uptake were characterized from the apical or basolateral fluid of pneumocytes grown on permeable support. Substrate specificity of transport was evaluated as a function of (3)H-L-arginine uptake inhibition in the presence of other amino acids. Transepithelial transport studies estimated (3)H-L-arginine flux in the apical-to-basolateral and basolateral-to-apical directions. Full length cDNA of rat amino acid transporter B(0,+) (rATB(0,+)) was cloned and its relative expression level studied. Results indicate that uptake of (3)H-L-arginine from apical fluid is dependent on Na(+) and Cl(-). Zwitterionic and cationic amino acids (excluding L-proline and anionic amino acids) inhibited uptake of (3)H-L-arginine from apical, but not basolateral incubation fluid. Apical-to-basolateral transepithelial flux of (3)H-L-arginine was 20x higher than basolateral-to-apical transport. Kinetic studies of (3)H-L-arginine uptake from apical fluid revealed maximal velocity (V(max)) and Michaelis-Menten constants (K(t)) of 33.32 +/- 2.12 pmol/mg protein/15 min and 0.50 +/- 0.11 mM, respectively, in a cooperative process having a coupling ratio of 1.18 +/- 0.16 with Na(+) and 1.11 +/- 0.13 with Cl(-). Expression of rATB(0,+) mRNA was identified by RT-PCR and Northern analysis. Corresponding cloned 3.2 kb rATB(0,+) cDNA sequence exhibits pronounced homology in deduced amino acid sequence to mouse (95% identity and 97% similarity) and human (89% identity and 95% similarity) ATB(0,+) homologues. We conclude that rat pneumocytes express ATB(0,+), which may partly contribute towards recovering cationic and neutral amino acids from alveolar luminal fluid.  相似文献   

8.
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamine(ex)/glutamine(in) pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.  相似文献   

9.
The neutral amino acid transporter B°-like from rat kidney, previously reconstituted in liposomes, was identified as B°AT1 by a specific antibody. Collectrin was present in the brush-border extract but not in functionally active proteoliposomes, indicating that it was not required for the transport function. Neutral amino acids behaved as competitive inhibitors of the glutamine transport mediated by B°AT1 with half saturation constants ranging from 0.13 to 4.74mM. The intraliposomal half saturation constant for glutamine was 2.0mM. By a bisubstrate kinetic analysis of the glutamine-Na(+) cotransport, a random simultaneous mechanism was found. Methylmercury and HgCl(2) inhibited the transporter; the inhibition was reversed by dithioerythritol, Cys and, at a lower extent, N-acetylcysteine but not by S-carboxymethylcysteine. The IC(50) of the transporter for methylmercury and HgCl(2) was 1.88 and 1.75μM, respectively. The reagents behaved as non-competitive inhibitors toward both glutamine and Na(+) and no protection by glutamine or Na(+) was found for the two inhibitors.  相似文献   

10.
The stoichiometry of Na coupling to amino acid movement across the brush border membrane of the rabbit distal ileum has been determined under initial rate conditions.The coupling ratio, defined as the amino acid-dependent Na influx/the Na-dependent amino acid influx, was equal to unity for alanine, measured over a 10-fold range of Na and alanine concentrations. Coupling ratio values determined under a single set of conditions for a number of amino acids varied from 1 for serine to 4.6 for methionine. Reducing the methionine concentration from 12.5 to 1.5 mM caused the coupling ratio value to fall from 4.6 to 1.2.These results are explained by assuming a fixed stoichiometry of 1 : 1 under all conditions, with initial binding of the amino acid (A) to the Na-dependent carrier (E) but with some amino acids being able to cross on the Na-dependent carrier in the absence of Na.The variation in coupling ratio values can be used to calculate KA, the apparent dissociation constant of amino acid from the Na-dependent carrier in the absence of Na, and the ratio k1k2, where k1 and k2 are first-order rate constants for translocation of the complexes EA and EANa, respectively. This method of processing results has been defined as delta analysis. The value of KA for methionine is 3.6 ± 1.1 mM and the k1k2 ratio is 1.01 ± 0.07. The constant coupling ratio value of 1 for alanine indicates that the value for KA is extremely high or that the k1 value is extremely low.  相似文献   

11.
Amino acids enter rabbit jejunal brush border membrane vesicles via three major transport systems: (1) simple passive diffusion; (2) Na-independent carriers; and (3) Na-dependent carriers. The passive permeability sequence of amino acids is very similar to that observed in other studies involving natural and artificial membranes. Based on uptake kinetics and cross-inhibition profiles, at least two Na-independent and three Na-dependent carrier-mediated pathways exist. One Na-independent pathway, similar to the classical L system, favors neutral amino acids, while the other pathway favors dibasic amino acids such as lysine. One Na-dependent pathway primarily serves neutral L-amino acids including 2-amino-2-norbornanecarboxylic acid hemihydrate (BCH), but not beta-alanine or alpha-methylaminoisobutyric acid (MeAIB). Another Na-dependent route favors phenylalanine and methionine, while the third pathway is selective for imino acids and MeAIB. Li is unable to substitute for Na in these systems. Cross-inhibition profiles indicated that none of the Na-dependent systems conform to classical A or ACS paradigms. Other notable features of jejunal brush border vesicles include (1) no beta-alanine carrier, and (2) no major proline/glycine interactions.  相似文献   

12.
To date, two different transporters that are capable of transporting alpha-(methylamino)isobutyric acid, the specific substrate for amino acid transport system A, have been cloned. These two transporters are known as ATA1 and ATA2. We have cloned a third transporter that is able to transport the system A-specific substrate. This new transporter, cloned from rat skeletal muscle and designated rATA3, consists of 547 amino acids and has a high degree of homology to rat ATA1 (47% identity) and rat ATA2 (57% identity). rATA3 mRNA is present only in the liver and skeletal muscle. When expressed in Xenopus laevis oocytes, rATA3 mediates the transport of alpha-[(14)C](methylamino)isobutyric acid and [(3)H]alanine. With the two-microelectrode voltage clamp technique, we have shown that exposure of rATA3-expressing oocytes to neutral, short-chain aliphatic amino acids induces inward currents. The amino acid-induced current is Na(+)-dependent and pH-dependent. Analysis of the currents with alanine as the substrate has shown that the K(0. 5) for alanine (i.e., concentration of the amino acid yielding half-maximal current) is 4.2+/-0.1 mM and that the Na(+):alanine stoichiometry is 1:1.  相似文献   

13.
Isolated small intestinal epithelial cells, after incubation at 4 degrees C for 30 min, reach ion concentrations (36 mM K+, 113 mM Na+ and 110 mM Cl-) very similar to those of the incubation medium. Upon rewarming to 37 degrees C, cells are able to extrude Na+, Cl- and water and to gain K+. Na+ extrusion is performed by two active mechanisms. The first mechanism, transporting Na+ by exchanging it for K+, is inhibited by ouabain and is insensitive to ethacrynic acid. It is the classical Na+ pump. The second mechanism transports Na+ with Cl- and water, is insensitive to ouabain but is inhibited by ethacrynic acid. Both mechanisms are inhibited by dinitrophenol and anoxia. The second Na+ extruding mechanism could be the Na+/K+/2Cl- cotransport system. However, this possibility can be ruled out because the force driving cotransport would work inwards, and because Na+ extrusion with water loss continues after substitution of Cl- by NO3-. We propose that enterocytes have a second Na+ pump, similar to that proposed in proximal tubular cells.  相似文献   

14.
We have evaluated the effect of lipopolysaccharides (LPS), endotoxins from gram negative bacteria, on sodium-coupled amino acid and phosphate transport by alveolar epithelial type II cells and on their alteration induced by oxidants. Alveolar type II cells were obtained by enzymatic digestion of rat lung and grown for 24 h prior to incubation with LPS and then exposed or not exposed to H2O2 (2.5 mM; 20 min). LPS (10 μg/ml, 24 h) induced a significant increase in the Na-dependent component of alanine and phosphate uptake while they decreased Na, K-ATPase activity measured by ouabain-sensitive 86Rb influx. We showed that this stimulatory effect i) was independent from macrophage products since it was not mimicked either by supernatant of LPS-treated alveolar macrophages or by pretreatment with tumor necrosis factor and/or interleukin 1 and ii) was dependent on protein synthesis since it was abolished by protein synthesis inhibitors cycloheximide and actinomycin D. Moreover, LPS blunted H2O2-induced decrease of Na-dependent alanine and phosphate uptake. This protective effect of LPS against H2O2 injury i) was independent of macrophage products, ii) was abolished by cycloheximide, and iii) was not associated with either changes in extracellular H2O2 clearance or catalase and glutathione peroxidase activities. We conclude that, in alveolar type II cells, LPS stimulate sodium-coupled transport by a process involving protein synthesis and partially prevent H2O2-induced decrease of Na-coupled transport without discernible change in antioxidant activities. © 1995 Wiley-Liss, Inc.  相似文献   

15.
The uptake of L-phenylalanine into brush border microvilli vesicles and basolateral plasma membrane vesicles isolated from rat kidney cortex by differential centrifugation and free flow electrophoresis was investigated using filtration techniques. Brush border microvilli but not basolateral plasma membrane vesicles take up L-phenylalanine by an Na+-dependent, saturable transport system. The apparent affinity of the transport system for L-phenylalanine is 6.1 mM at 100 mM Na+ and for Na+ 13mM at 1 mM L-phenylalanine. Reduction of the Na+ concentration reduces the apparent affinity of the transport system for L-phenylalanine but does not alter the maximum velocity. In the presence of an electrochemical potential difference of Na+ across the membrane (etaNao greater than etaNai) the brush border microvilli accumulate transiently L-phenylalanine over the concentration in the incubation medium (overshoot pheomenon). This overshoot and the initial rate of uptake are markedly increased when the intravesicular space is rendered electrically more negative by membrane diffusion potentials induced by the use of highly permeant anions, of valinomycin in the presence of an outwardly directed K+ gradient and of carbonyl cyanide p-trifluoromethoxyphenylhydrazone in the presence of an outward-directed proton gradient. These results indicate that the entry of L-phenylalanine across the brush border membrane into the proximal tubular epithelial cells involves cotransport with Na+ and is dependent on the concentration difference of the amino acid, on the concentration difference of Na+ and on the electrical potential difference. The exit of L-phenylalanine across the basolateral plasma membranes is Na+-independent and probably involves facilitated diffusion.  相似文献   

16.
Amino acid transport in horse erythrocytes is regulated by three co-dominant allelomorphic genes coding for high-affinity transport activity (system asc1), low-affinity transport activity (system asc2) and transport-deficiency, respectively. The asc systems are selective for neutral amino acids of intermediate size, but unlike conventional system ASC, do not require Na+ for activity. In the present series of experiments we have used a combined kinetic and genetic approach to establish that dibasic amino acids are also asc substrates, systems asc1 and asc2 representing the only mediated routes of cationic amino acid transport in horse erythrocytes. Both transporters were found to exhibit a strong preference for dibasic amino acids compared with neutral amino acids of similar size. Apparent Km values (mM) for influx via system asc1 were L-lysine (9), L-ornithine (27), L-arginine (27), L-alanine (0.35). Corresponding Vmax estimates (mmol/l cells per h, 37 degrees C) were L-lysine (1.65), L-ornithine (2.15), L-arginine (0.54), L-alanine (1.69). Apparent Km values for L-lysine and L-ornithine influx via system asc2 were approximately 90 and greater than 100 mM, respectively, with Vmax values greater than 2 and greater than 1 mmol/l cells per h, respectively. Apparent Km and Vmax values for L-alanine uptake by system asc2 were 14 mM and 6.90 mmol/l cells per h. In contrast, L-arginine was transported by system asc2 with the same apparent Km as L-alanine (14 mM), but with a 77-fold lower Vmax. This dibasic amino acid was shown to cause cis- and trans-inhibition of system asc2 in a manner analogous to its interaction with system ASC, where the side-chain guanidinium group is considered to occupy the Na+-binding site on the transporter. Concentrations of extracellular L-arginine causing 50% inhibition of zero-trans L-alanine influx and half-maximum inhibition of L-alanine zero-trans efflux were 14 mM (extracellular L-alanine concentration 15 mM) and 3 mM (intracellular L-alanine concentration 15.5 mM), respectively. We interpret these observations as evidence of structural homology between the horse erythrocyte asc transporters and system ASC. Physiologically, intracellular L-arginine may function as an endogenous inhibitor of system asc2 activity.  相似文献   

17.
The membrane changes which occur during cellular maturation of erythroid cells have been investigated. The transport of alpha-aminoisobutyric acid, alanine, and N-methylated-alpha-aminoisobutyric acid have been studied in the erythroblastic leukemic cell, the reticulocyte, and the erythrocyte of the Long-Evans rat. The dependence of amino acid transport on extracellular sodium concentration was investigated. Erythrocytes were found to transport these amino acids only by Na-independent systems. The steady state distribution ratio was less than 1. Reticulocytes were found to transport alpha-aminoisobutyric acid and alanine by Na-dependent systems, but only small amounts of N-methylated-alpha-aminoisobutyric acid. Small amounts of these amino acids were transported by Na-independent systems. The steady state distribution ratio was greater than one for Na-dependent transport. The erythroblastic leukemia cell, a model immature erythroid cell, showed marked Na-dependence (greater than 90%) for alpha-aminoisobutyric acid and alanine transport, and greater than 80% for the Na-dependent transport of N-methyl-alpha-aminoisobutyric acid. The steady state distribution ratio for the Na-dependent transport was greater than 4. In the erythroblastic leukemic cell, at least three Na-dependent systems are present: one includes alanine and alpha-aminoisobutyric acid, but excludes N-methyl-alpha-aminoisobutyric acid; one is for alpha-aminoisobutyric acid, alanine and also N-methyl-alpha-aminoisobutyric acid; and one is for N-methyl-alpha-aminoisobutyric acid alone. In the reticulocyte, the number of Na-dependent systems are reduced to two: one for alpha-aminoisobutyric acid and alanine; one for N-methyl-alpha-aminoisobutyric acid. In the erythrocytes, no Na-dependent transport was found. Therefore, maturation of the blast cell to the mature erythrocyte is characterized by a systematic loss in the specificity and number of transport system for amino acids.  相似文献   

18.
Transport systems y+, asc and ASC exhibit dual interactions with dibasic and neutral amino acids. For conventional Na(+)-dependent neutral amino acid system ASC, side chain amino and guanido groups bind to the Na+ site on the transporter. The topographically equivalent recognition site on related system asc binds harmaline (a Na(+)-site inhibitor) with the same affinity as asc (apparent Ki range 1-4 mM), but exhibits no detectable affinity for Ha. Although also classified as Na(+)-independent, dibasic amino acid transport system y+ accepts neutral amino acids when Na+ or another acceptable cation is also present. This latter observation implies that the y+ translocation site binds Na+ and suggests possible functional and structural similarities with ASC/asc. In the present series of experiments with human erythrocytes, system y(+)-mediated lysine uptake (5 microM, 20 degrees C) was found to be 3-fold higher in isotonic sucrose medium than in normal 150 mM NaCl medium. This difference was not a secondary consequence of changes in membrane potential, but resulted from Na+ functioning as a competitive inhibitor of transport. Apparent Km and Vmax values for lysine transport at 20 degrees C were 15.2 microM and 183 mumol/l cells per h, respectively, in sucrose medium and 59.4 microM and 228 mumol/l cells per h in Na+ medium. Similar results were obtained with y+ in erythrocytes of a primitive vertebrate, the Pacific hagfish (Eptatretus stouti), indicating that Na(+)-inhibition is a general property of this class of amino acid transporter. At a permeant concentration of 5 microM, the IC50 value for Na(+)-inhibition of lysine uptake by human erythrocytes was 27 mM. Other inorganic and organic cations, including K+ and guanidinium+, also inhibited transport. In parallel with its actions on ASC/asc harmaline competitively inhibited lysine uptake by human cells in sucrose medium. As predicted from mutually competitive binding to the y+ translocation site, the presence of 150 mM Na+ increased the harmaline inhibition constant (Ki) from 0.23 mM in sucrose medium to 0.75 mM in NaCl medium. We interpret these observations as further evidence that y+, asc and ASC represent a family of closely related transporters with a common evolutionary origin.  相似文献   

19.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

20.
Seven L-amino acids (Trp, Arg, Lys, Met, Ile, Val, and Phe) partially (28-81%) reversed the inhibitory action of 1 microM gamma-aminobutyric acid (GABA) on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes, with EC50 values ranging from 5 to 120 mM. D-Trp, D-Arg, D-Lys, D-Met, D-Val, and D-Phe were approximately equipotent with their L-isomers. Tyramine, phenethylamine, and tryptamine, the decarboxylation products of the aromatic amino acids (Tyr, Phe, and Trp, respectively), reversed the inhibitory action of 1 microM GABA on [35S]TBPS binding more potently than the parent amino acids (EC50 values = 1.5-3.0 mM). Human hereditary amino acidemias involving Arg, Lys, Ile, Val, and Phe are associated with seizures, and these amino acids and/or their metabolites may block GABA-A receptors. Five other L-amino acids (ornithine, His, Glu, Pro, and Ala) as well as Gly and beta-Ala inhibited [35S]TBPS binding with IC50 values ranging from 0.1 to 37 mM, and these inhibitions were reversed by the GABA-A receptor blocker R 5135 in all cases. The inhibitory effects of L-ornithine, L-Ala, L-Glu, and L-Pro were stereospecific, because the corresponding D-isomers were considerably less inhibitory. L-His, D-His, and L-Glu gave incomplete (plateau) inhibitions. Human hereditary amino acidemias involving L-ornithine, His, Pro, Gly, and beta-Ala are also associated with seizures, and we speculate that these GABA-mimetic amino acids may desensitize GABA-A receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号