首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Chronic cocaine administration produces significant increases in cocaine-induced locomotor activity and stereotypy. In vivo microdialysis procedures were used to monitor extracellular dopamine (DA) and cocaine concentrations in the nucleus accumbens (N ACC) and cocaine concentrations in plasma of animals that received chronic or acute cocaine treatments. Following a cocaine challenge injection, concentrations of both cocaine and DA increased to significantly higher levels over time in animals that had received daily cocaine injections for 10 or 30 days than in control animals that received daily injections of saline. Concentrations of cocaine and DA in the N ACC reached maximum levels in the first 30 min following a challenge injection of cocaine. The maximum cocaine concentrations of 10- and 30-day chronic animals were, respectively, 186% and 156%, whereas the maximum DA concentrations were 264% and 216% above the maximum values observed in acute control animals. The results indicate that reverse tolerance effects observed following chronic cocaine administration may in part be accounted for by increased cocaine concentrations. Furthermore, chronic cocaine administration (over a 10- or 30-day period) increased the concentration of cocaine detected in plasma above control levels following a challenge injection. The increase in brain concentrations of cocaine in chronic animals is apparently due to increased concentrations of cocaine in plasma. A physiological change occurs in the periphery as a result of chronic cocaine administration that increases cocaine concentrations in plasma, increases extracellular cocaine levels in the brain, and increases the extracellular concentration of DA in the N ACC.  相似文献   

2.
Abstract: The mechanism by which two D3 receptor-preferring agonists, 7-hydroxydipropylaminotetralin (7-OH-DPAT) and quinelorane, modulate cocaine reinforcement was examined by monitoring nucleus accumbens dopamine levels with in vivo microdialysis while rats intravenously self-administered the following four different drug solutions consecutively: (1) cocaine; (2) a combination of cocaine plus a low dose of either agonist; (3) either agonist alone; and finally, (4) a physiological saline solution. Both 7-OH-DPAT (4 µg/infusion) and quinelorane (0.25 µg/infusion) decreased cocaine (0.25 mg/infusion) intake in a manner indicating an enhancement of cocaine reinforcement and simultaneously decreased the cocaine-induced elevations in nucleus accumbens dopamine levels by >50%. Subsequent self-administration of either 7-OH-DPAT (4 µg/infusion) or quinelorane (0.25 µg/infusion) alone resulted in significant, but stable, increases in drug intake, with a concurrent decrease in nucleus accumbens dopamine levels to ∼50% below nondrug baseline levels. These findings indicate that postsynaptic D3 receptor stimulation in the nucleus accumbens enhances the reinforcing properties of cocaine. In a second experiment, local application of 7-OH-DPAT via reverse dialysis (30 and 100 n M perfusate concentrations) dose-dependently decreased nucleus accumbens dopamine efflux to 76 ± 3.9 and 61 ± 6.3% of baseline, respectively, whereas there was no effect of this agonist on dopamine efflux in the ipsilateral striatum of these same animals. Coperfusion with the D3 receptor-preferring antagonist nafadotride dose-dependently blocked the effect of 7-OH-DPAT on nucleus accumbens dopamine efflux. These results suggest that, at low concentrations, 7-OH-DPAT selectively activates D3 receptors in vivo.  相似文献   

3.
Abstract: Cocaethylene is a pharmacologically active metabolite resulting from concurrent cocaine and ethanol consumption. The effects of cocaine and cocaethylene on extracellular levels of dopamine in the nucleus accumbens, and serotonin in the striatum were characterized in vivo in the anesthetized rat. Both intravenous (3 μmol/kg) and intraperitoneal (44 μmol/kg) routes of administration were used. In addition to monitoring neurotransmitter levels, microdialysate levels of cocaine and cocaethylene were determined at 4-min intervals after intravenous administration, and at 20-min intervals after intraperitoneal administration. Extracellular levels of dopamine in the nucleus accumbens were increased to ∼400% of preinjection value by both cocaine and cocaethylene when administered intravenously. Cocaine caused a significant increase of striatal serotonin to 200% preinjection value, whereas cocaethylene had no effect. Brain levels of cocaine and cocaethylene after intravenous administration did not differ. After intraperitoneal administration, extracellular levels of dopamine in the nucleus accumbens were increased to 400% of preinjection levels by cocaine, but were only increased to 200% of preinjection levels by cocaethylene, the difference being statistically significant. Serotonin levels were increased to 360% of preinjection levels by cocaine, but only to 175% of preinjection value by cocaethylene. Levels of cocaine attained in brain were significantly higher than those for cocaethylene, suggesting pharmacokinetic differences with the intraperitoneal route. These results confirm in vivo that cocaethylene is more selective in its actions than cocaine with respect to dopamine and serotonin uptake. In addition, route-dependent differences in attainment of brain drug levels have been observed that may impact on interpretations of the relative potency of the reinforcement value of these compounds.  相似文献   

4.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

5.
Abstract: Regional differences in the kinetics and pharmacological inhibition of dopamine uptake were investigated with fast-scan cyclic voltammetry in both the intact rat brain and a brain slice preparation. The regions compared were the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens. The frequency dependence of dopamine efflux evoked in vivo by electrical stimulation of the medial forebrain bundle was evaluated by nonlinear curve fitting with a Michaelis-Menten-based kinetic model. The K m for dopamine uptake was found to be significantly higher in the basolateral amygdala (0.6 µ M ) than in the other two regions (0.2 µ M ), whereas the V max value for dopamine uptake in the basolateral amygdala was significantly lower (0.49 µ M /s vs. 3.8 and 2.4 µ M /s in the caudate and accumbens, respectively). Similar kinetics were also obtained in brain slices. Addition of a dopamine uptake inhibitor, cocaine or nomifensine (10 µ M ), to the perfusion buffer increased the apparent K m value >25-fold in slices of both the caudate-putamen and nucleus accumbens. In contrast, neither uptake inhibitor had an observable effect in the basolateral amygdaloid nucleus. Thus, dopamine uptake in the rat brain is regionally distinct with regard to rate, affinity, and sensitivity to competitive inhibition.  相似文献   

6.
Beta-endorphin is an endogenous opioid peptide that has been hypothesized to be involved in the behavioral effects of drugs of abuse including psychostimulants. Using microdialysis, we studied the effect of cocaine on extracellular levels of beta-endorphin in the nucleus accumbens, a brain region involved in the reinforcing effects of psychostimulant drugs. Experimenter-delivered cocaine (2 mg/kg, i.v.) increased extracellular beta-endorphin immunoreactive levels in the nucleus accumbens, an effect attenuated by 6-hydroxy-dopamine lesions or systemic administration of the D1-like receptor antagonist, SCH-23390 (0.25 mg/kg, i.p.). The effect of cocaine on beta-endorphin release in the nucleus accumbens was mimicked by a local perfusion of dopamine (5 microm) and was blocked by coadministration of SCH-23390 (10 microm). Self-administered cocaine (1 mg/kg/infusion, i.v.) also increased extracellular beta-endorphin levels in the nucleus accumbens. In addition, using functional magnetic resonance imaging, we found that cocaine (1 mg/kg, i.v.) increases regional brain activity in the nucleus accumbens and arcuate nucleus. We demonstrate an increase in beta-endorphin release in the nucleus accumbens following experimenter-delivered and self-administered cocaine mediated by the local dopaminergic system. These findings suggest that activation of the beta-endorphin neurons within the arcuate nucleus-nucleus accumbens pathway may be important in the neurobiological mechanisms underlying the behavioral effects of cocaine.  相似文献   

7.
Acute cocaine administration preferentially increases extracellular dopamine levels in nucleus accumbens as compared with striatum. To investigate whether a differential effect of cocaine on dopamine uptake could explain this observation, we used in vivo electrochemical recordings in anesthetized rats in conjunction with a paradigm that measures dopamine clearance and diffusion without the confounding effects of release. When a finite amount of dopamine was pressure-ejected at 5-min intervals from a micropipette adjacent to the electrode, transient and reproducible increases in dopamine levels were detected. In response to 15 mg/kg of cocaine-HCl (i.p.), these signals increased in nucleus accumbens, indicating significant inhibition of the dopamine transporter. The time course of the dopamine signal increase paralleled that of behavioral changes in unanesthetized rats receiving the same dose of cocaine. In contrast, no change in the dopamine signal was detected in dorsal striatum; however, when the dose of cocaine was increased to 20 mg/kg, enhancement of the dopamine signal occurred in both brain areas. Quantitative autoradiography with [3H]mazindol revealed that the affinity of the dopamine transporter for cocaine was similar in both brain areas but that the density of [3H]mazindol binding sites in nucleus accumbens was 60% lower than in dorsal striatum. Tissue dopamine levels in nucleus accumbens were 44% lower. Our results suggest that a difference in dopamine uptake may explain the greater sensitivity of nucleus accumbens to cocaine as compared with dorsal striatum. Furthermore, this difference may be due to fewer dopamine transporter molecules in nucleus accumbens for cocaine to inhibit, rather than to a higher affinity of the transporter for cocaine.  相似文献   

8.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration.  相似文献   

9.
Results of numerous studies indicate that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) modulates central dopamine systems, and that GABA(B) receptors may play a primary role in decreasing dopamine release. To determine if chronic cocaine administration alters the functional coupling of GABA(B) receptors to G-proteins in central dopamine systems, male F-344 rats received cocaine (15 mg/kg/injection) or saline three times a day at hourly intervals for fourteen consecutive days. Rats were decapitated one hour after the last injection and crude membrane preparations were made from the substantia nigra, caudate-putamen, ventral tegmental area, nucleus accumbens, and frontal cortex of individual rats. The ability of the specific GABA(B) receptor agonist baclofen to stimulate 35S-GTPgammaS binding in each of these regions was determined for individual animals. Additionally, baclofen-stimulated 35S-GTPgammaS binding in each of these regions in rats that received cocaine was compared to baclofen-stimulated 35S-GTPgammaS binding in rats that received control injections of saline. The EC50 of baclofen and maximal baclofen-stimulated 35S-GTPgammaS binding over basal levels were determined in each brain region in the saline group and in the cocaine group. Two-way ANOVA revealed a significant decrease in GABA(B) receptor-stimulated 35S-GTPgammaS binding in the ventral tegmental area of the cocaine group compared to the saline group. These data suggest that chronic exposure to cocaine decreases the functional coupling of GABA(B) receptors to G-proteins selectively in the ventral tegmental area. This finding may have implications in the augmented extracellular dopamine levels seen in the nucleus accumbens of rats that have been sensitized to cocaine.  相似文献   

10.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

11.
The behavioral effects of cocaine are enhanced following constitutive deletion of the serotonin(1B) receptor. The neural substrates mediating the enhanced response to cocaine are unknown. The present studies determined whether basal dopamine dynamics or cocaine-evoked dopamine levels are altered in projection areas of mesostriatal or mesoaccumbens dopamine neurons following serotonin(1B) receptor deletion. Male wild-type and serotonin(1B) knockout mice were implanted with microdialysis guide cannulas aimed at the dorsal striatum or nucleus accumbens. The zero net flux method of quantitative microdialysis was used to quantify basal extracellular dopamine concentrations (DA(ext)) and the extraction fraction of dopamine (E(d)), which provides an index of dopamine uptake. Conventional microdialysis techniques were used to quantify cocaine (0, 5.0, and 20.0 mg/kg)-evoked dopamine overflow. Basal DA(ext) and E(d) did not differ in striatum of wild-type and knockout mice. Similarly, cocaine-stimulated dopamine overflow did not differ between genotype. The basal E(d) did not differ in the nucleus accumbens of wild-type and knockout mice. However, DA(ext) was significantly elevated in the nucleus accumbens of knockout mice. Cocaine-evoked dopamine overflow (nM) was also enhanced in the nucleus accumbens of knockout mice. However, the cocaine-induced increase in dopamine levels, relative to basal values, did not differ between genotype. These data demonstrate that deletion of the serotonin(1B) receptor is associated with increases in basal DA(ext) in the nucleus accumbens. This increase is not associated with an alteration in E(d), suggesting increased basal dopamine release in these animals. It is hypothesized that these alterations in presynaptic neuronal activity are a compensatory response to constitutive deletion of the serotonin(1B) receptor and may contribute to the enhanced behavioral effects of psychostimulants observed in knockout mice.  相似文献   

12.
This study assessed the effects of acute intravenous L-tryptophan (neutral amino acid precursor for serotonin) administration on cocaine-induced dopaminergic responses. Male Sprague-Dawley rats were surgically implanted with guide cannulas in the nucleus accumbens 5 days prior to the study and with vascular catheters (carotid artery and jugular vein) on the day prior to the study. Using microdialysis, extracellular nucleus accumbens dopamine levels were measured in freely moving rats. Following a 2 h equilibration period, animals were randomized (n=7-8 per group) to receive either a constant intravenous (IV) infusion of L-tryptophan (200 mg/kg/h) or an equal volume (2 ml/h) of saline. Ninety minutes into the infusion, cocaine (20 mg/kg) was injected intra-peritoneally. Cocaine increased nucleus accumbens microdialysate dopamine levels (500% at 30 min). This was associated with marked hyperactivity. Tryptophan infusion elevated plasma tryptophan (8-fold), and blunted the cocaine-induced increase in nucleus accumbens microdialysate dopamine levels by approximately 60%. Furthermore, tryptophan attenuated the cocaine-induced locomotor activity. These neurochemical and behavioral effects of tryptophan were associated with a marked increase in brain tissue serotonin content. The results of these studies demonstrate the feasibility of acute dietary manipulation of neurochemical and behavioral responses to cocaine. The duration, adaptation and tolerance to these effects remain to be elucidated.  相似文献   

13.
Recent evidence suggests that modulation of dopaminergic transmission alters striatal levels of extracellular adenosine. The present study used reverse microdialysis of the selective dopamine D2 receptor antagonist raclopride to investigate whether a blockade of dopamine D2 receptors modifies extracellular adenosine concentrations in the nucleus accumbens. Results reveal that perfusion of raclopride produced an increase of dialysate adenosine which was significant with a high (10 mM) and intermediate (1 mM) drug concentration, but not with lower drug concentrations (10 and 100 μM). Thus, the present study demonstrates that a selective blockade of dopamine D2 receptors in the nucleus accumbens produced a pronounced increase of extracellular adenosine. The cellular mechanisms underlying this effect are yet unknown. It is suggested that the increase of extracellular adenosine might be related to a homeostatic modulatory mechanism proposed to be a key function of adenosine in response to neuronal metabolic challenges.  相似文献   

14.
High concentrations of cocaethylene (EC), the ethyl ester of benzoylecgonine, were measured in the blood of individuals who had concurrently used cocaine and ethanol. Since the powerful reinforcing effects of cocaine appear to be dependent on inhibition of dopamine reuptake in brain, we compared the effects of EC on the dopamine uptake system and its behavioral effects with those of cocaine. EC was equipotent to cocaine with respect to inhibition of binding of [3H]GBR 12935 to the dopamine reuptake complex, inhibition of [3H]dopamine uptake into synaptosomes and in its ability to increase extracellular dopamine concentration in the nucleus accumbens following its systemic administration to rats. Moreover, in rats, EC and cocaine each increased locomotor activity and rearing to the same extent following i.p. administration. In self-administration studies in primates, EC was approximately equipotent to cocaine in maintaining responding. The in vivo formation of this active, transesterified ethyl homolog of cocaine may contribute to the effects and consequences of combined cocaine and ethanol abuse.  相似文献   

15.
16.
Stimulated dopamine overflow has been measured with in vivo voltammetry in the caudate-putamen and nucleus accumbens. Overflow was induced by electrical stimulation of the medial forebrain bundle with 120 1-ms, 300-microA, biphasic pulses at frequencies between 10 and 60 Hz. Overflow was measured with a Nafion-coated, carbon-fiber electrode used with fast-scan voltammetry (300 V s-1). Quantification and identification of dopamine concentrations down to 100 nM in vivo is possible with this technique. The overflow curves were fit to a kinetic model that describes the measured response as a function of uptake (characterized by a Vmax and Km) and release (characterized by the concentration of dopamine released per stimulus pulse). Overflow curves in both regions could be described with similar kinetic parameters except for the Vmax, which in the nucleus accumbens was only 60% of that measured in the caudate-putamen. Uptake inhibition by nomifensine (20 mg kg-1) caused an apparent 15-fold change in the value of Km in the nucleus accumbens, similar to results previously reported in the caudate-putamen. In contrast, metoclopramide (10 mg kg-1) and sulpiride (100 mg kg-1) altered the apparent amount of dopamine released per stimulus pulse without a change in the uptake kinetics.  相似文献   

17.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

18.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

19.
L Hernandez  B G Hoebel 《Life sciences》1988,42(18):1705-1712
Dopamine was measured by microdialysis in the nucleus accumbens of freely moving rats while they experienced rewarding food, brain stimulation and drugs. Extracellular dopamine increased 37% when the animals pressed a lever for food reward. Electrical stimulation of a lateral hypothalamic feeding-reward (self-stimulation) site caused a similar increase in dopamine, with or without food. At the site in the nucleus accumbens where rats will administer amphetamine to themselves, injections of amphetamine or cocaine increased extracellular dopamine five-fold. Thus amphetamine and cocaine increase dopamine in a behavior reinforcement system which is normally activated by eating. Conversely, the release of dopamine by eating could be a factor in addiction to food.  相似文献   

20.
Dopaminergic innervation of the amygdala is highly responsive to stress   总被引:6,自引:0,他引:6  
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号