首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chromatin is composed of genomic DNA and histones, forming a hierarchical architecture in the nucleus. The chromatin hierarchy is common among eukaryotes despite different intrinsic properties of the genome. To investigate an effect of the differences in genome organization, chromatin unfolding processes were comparatively analyzed using Schizosaccaromyces pombe, Saccharomyces cerevisiae, and chicken erythrocyte. NaCl titration showed dynamic changes of the chromatin. 400-1000 mM NaCl facilitated beads with approximately 115 nm in diameter in S. pombe chromatin. A similar transition was also observed in S. cerevisiae chromatin. This process did not involve core histone dissociation from the chromatin, and the persistence length after the transition was approximately 26 nm for S. pombe and approximately 28 nm for S. cerevisiae, indicating a salt-induced unfolding to "beads-on-a-string" fibers. Reduced salt concentration recovered the original structure, suggesting that electrostatic interaction would regulate this discrete folding-unfolding process. On the other hand, the linker histone was extracted from chicken chromatin at 400 mM NaCl, and AFM observed the "beads-on-a-string" fibers around a nucleus. Unlike yeast chromatin, therefore, this unfolding was irreversible because of linker histone dissociation. These results indicate that the chromatin unfolding and refolding depend on the presence and absence of the linker histone, and the length of the linker DNA.  相似文献   

2.
Chromatin solubility was observed at several concentrations of various cations. Spermine and spermidine precipitated (50%) chromatin at about 0.2 mM, Ca2+ and Mg2+ at about 1-2 mM, and Na+ at about 100 mM. Further increases in cation concentration induced more aggregation, but eventually excess cation increased chromatin solubility so that 50% solubility was observed again at 60 mM Mg2+ and 180 mM Na+. H1 histone was 50% released by 80 mM MgCl2 or 425 mM NaCl. Combinations of MgCl2 and NaCl showed that Mg2+ and Na+ are synergistic in the induction of aggregation in lower concentrations (less than 2 mM) of Mg2+ but antagonistic at higher concentrations, and a similar effect of NaCl on spermidine-induced precipitation was shown below and above about 0.2 mM spermidine. At 5 mM, MgCl2 proved capable of precipitating chromatin depleted of H1 histone, but no concentration of NaCl was capable of doing so. These phenomena can be rationalized by supposing that neutralization of chromatin by any cation (including H1 histone) favors aggregation and also that cross-linking of chromatin fibers by multivalent cations (including H1 histone) is also critically important. The exchange of H1 histone between chromatin fragments was tested in various concentrations of different salts. H1 exchange was correlated with chromatin aggregation rather than with ionic strength and thus appears to depend on fiber to fiber contact. Under conditions where H1 exchanges between chromatin fibers that are permitted to make contact with each other, no H1 exchange occurred between chromatin inside the nucleus and chromatin outside, even though H1 histone is capable of passage through the nuclear membrane.  相似文献   

3.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

4.
5.
The diameters of chromatin fibers from Thyone briareus (sea cucumber) sperm (DNA linker length, n = 87 bp) and Necturus maculosus (mudpuppy) erythrocytes (n = 48 bp) were investigated. Soluble fibers were frozen into vitrified aqueous solutions of physiological ionic strength (124 mM), imaged by cryo-EM, and measured interactively using quantitative computer image-processing techniques. Frozen-hydrated Thyone and Necturus fibers had significantly different mean diameters of 43.5 nm (SD = 4.2 nm; SEM = 0.61 nm) and 32.0 nm (SD = 3.0 nm; SEM = 0.36 nm), respectively. Evaluation of previously published EM data shows that the diameters of chromatin from a large number of sources are proportional to linker length. In addition, the inherent variability in fiber diameter suggests a relationship between fiber structure and the heterogeneity of linker length. The cryo-EM data were in quantitative agreement with space-filling double-helical crossed-linker models of Thyone and Necturus chromatin. The data, however, do not support solenoid or twisted-ribbon models for chromatin that specify a constant 30 nm diameter. To reconcile the concept of solenoidal packing with the data, we propose a variable-diameter solid-solenoid model with a fiber diameter that increases with linker length. In principle, each of the variable diameter models for chromatin can be reconciled with local variations in linker length.  相似文献   

6.
Fiber diameter, radial distribution of density, and radius of gyration were determined from scanning transmission electron microscopy (STEM) of unstained, frozen-dried chromatin fibers. Chromatin fibers isolated under physiological conditions (ionic strength, 124 mM) from Thyone briareus sperm (DNA linker length, n = 87 bp) and Necturus maculosus erythrocytes (n = 48 bp) were analyzed by objective image-processing techniques. The mean outer diameters were determined to be 38.0 nm (SD = 3.7 nm; SEM = 0.36 nm) and 31.2 nm (SD = 3.6 nm; SEM = 0.32 nm) for Thyone and Necturus, respectively. These data are inconsistent with the twisted-ribbon and solenoid models, which predict constant diameters of approximately 30 nm, independent of DNA linker length. Calculated radial density distributions of chromatin exhibited relatively uniform density with no central hole, although the 4-nm hole in tobacco mosaic virus (TMV) from the same micrographs was visualized clearly. The existence of density at the center of chromatin fibers is in strong disagreement with the hollow-solenoid and hollow-twisted-ribbon models, which predict central holes of 16 and 9 nm for chromatin of 38 and 31 nm diameter, respectively. The cross-sectional radii of gyration were calculated from the radial density distributions and found to be 13.6 nm for Thyone and 11.1 nm for Necturus, in good agreement with x-ray and neutron scattering. The STEM data do not support the solenoid or twisted-ribbon models for chromatin fiber structure. They do, however, support the double-helical crossed-linker models, which exhibit a strong dependence of fiber diameter upon DNA linker length and have linker DNA at the center.  相似文献   

7.
8.
The method of circular dichroism (CD) has been used to investigate the reconstitution of mononucleosomes from C3HA mice liver and ascitic hepatoma 22A cells chromatin. It has been revealed that the more unfolding state of DNA in ascitic nucleosomes (discovered earlier) is determined by the peculiarities of the interactions between DNA and the dimers H2A-H2B, as well as by the linker histones of the H1 group. The investigation of the DNA folding in the oligonucleosome chains with increasing ionic strength has shown complete invariability of the DNA compactness in the ascitic chromatin up to 100 mM NaCl, while in liver nucleosomes an additional folding of the linker portion of the DNA was observed within the range of 20-40 mM NaCl. Oligonucleosomes from ascitic chromatin are less inclined to association upon increasing ionic strength, as compared with those from liver chromatin.  相似文献   

9.
Quantitative analysis of the circular dichroism of nucleohistones and protein-free DNA was carried out in order to determine the structure and the role of the linker region DNA in chromatin, in terms of the conformational change of chromatin as a function of the ionic strength. It is shown clearly that the circular dichroism of Hl-depleted chromatin isolated from calf thymus is determined only by the ratio of the core region to the linker region and demonstrated by the linear combination of the spectrum of protein-free DNA and that of the nucleosome core in 5 mm-Tris · HCl, 1 mm-EDTA (pH 7.8). The calculated spectrum for the linker region in the H1-depleted chromatin was in good agreement with that of protein-free DNA. From the difference spectra between nucleohistones and protein-free DNA, it is suggested that the chromatin has an additional winding of DNA other than 146 base-pairs of DNA around the histone core. By decreasing the ionic strength to values lower than 5 mm-Tris · HCl, 1 mm-EDTA, the ellipticity of H1-depleted chromatin increased greatly between 250 nm and 300 nm while the increase was small in the case of chromatin and the nucleosome core. Nucleosomes with linker region DNA but without histone H1 also show great increase in ellipticity in this range of wavelengths as the ionic strength is decreased. Therefore, the linker region in H1-depleted chromatin plays an important role in the conformational changes brought about by changes in the ionic strength, and the conformational changes caused in the DNA of chromatin by decreasing the ionic strength are suppressed by the presence of histone H1.  相似文献   

10.
Depending on ionic strength, chromatin can assume either a condensed, supranucleosomal conformation or the form of an extended nucleosomal fiber. Using sedimentation velocity analysis, both types of structures could be identified in chromatin prepared from cell nuclei of fetal rat brain. When the ionic strength was reduced from 60 to 10 mM NaCl, the average S-value of a defined chromatin fiber fraction (12–15 nucleosomes in size) decreased dramatically from 72 S to 55 S, reflecting the unfolding of condensed chromatin to an extended conformation. Correspondingly, the average S-value of histone H1-depleted chromatin (Ch) was 54 S at 60 mM NaCl and did not change significantly at lower NaCl concentrations. Ch contains only the core histones and is, therefore, relaxed into an extended form.

Using a monoclonal antibody (ER-6) specific for O6-ethyldeoxyguanosine, we studied the influence of chromatin conformation on the formation of O6-ethylguanine (O6-EtGua) in the DNA of chromatin exposed to the carcinogen N-ethyl-N-nitrosourea (EtNU; 1 mg/ml, 37°C, 20 min) in vitro. When the NaCl concentration during incubations with EtNU was varied between 0 and 100 mM, the amount of O6-EtGua formed in the DNA of complete chromatin (Ch+) was highest at 0 mM NaCl, then decreased exponentially with increasing ionic strength, and remained approximately constant at values 50 mM NaCl. A similar dependence on ionic strength was found for the formation of O6-EtGua in the DNA of Ch and in native DNA. The frequency of O6-EtGua was highest in native DNA, followed by the DNA of Ch, and lowest in the DNA of Ch+. At each salt concentration, the O6-EtGua content of Ch+ DNA relative to the corresponding values for Ch DNA and native DNA, remained unchanged (0.70±0.03 S.D. and 0.42±0.03 S.D., respectively). In addition to O6-EtGua, the formation of 7-ethylguanine (7-EtGua; major groove of the DNA double helix) and 3-ethyladenine (3-EtAde; minor groove) was analysed after exposure to [1-14C]EtNU. 7-EtGua was the most frequently formed ethylation product, followed by O6-EtGua and 3-EtAde. As in the case of O6-EtGua, the frequencies of 7-EtGua and 3-EtAde were dependent on ionic strength, and decreased in the order: native DNA, Ch DNA, and Ch+ DNA. Compared with native DNA (relative value, 100), the frequencies of O6-EtGua and 7-EtGua in DNA were reduced to a similar extent in Ch (rel. values 62.1 and 61.2, respectively) and in Ch+ (rel. values for both products, 43.9). The corresponding values for 3-EtAde were slightly lower in both types of chromatin fibers (rel. values 56.7 and 39.5, respectively). Thus, the core histones generally protect DNA from ethylation by EtNU. While nucleophilic sites in the major groove and in the base-pairing region of the DNA double helix are protected to about the same degree, the N-3 position of adenine in the minor groove is slightly less accessible to the ethyldiazonium ion generated from EtNU. In all cases the highest degree of protection is obtained when histone H1 is present in chromatin.  相似文献   


11.
Circular dichroism has been used to measure the conformation changes in the DNA of chromatin and chromatin subunits as a function of ionic strength. Transfer of chromatin from 0.15 M to 0.25 mM salt led to an enhancement of the circular dichroic bands at 275 and 285 nm. Removal of histone H1 did not appreciably affect the circular dichroic spectrum when measured in 0.15 M salt, but in 0.25 mM salt H1 depletion led to a marked increase in the ellipticity. Conformation changes due to low ionic strength were also observed with a 145- and a 172-bp chromatin subunit. A linear combination of the ellipticities of the DNA of the two domains in chromatin, namely core and linker, was successful for measurements at 0.15 M salt, but large unexplained discrepancies appeared with the data from measurements in 0.25 mM salt.  相似文献   

12.
The location of the globular domain of histone H5 relative to the axis of the 30 nm chromatin fiber was investigated by following the accessibility of this region of the molecule in chicken erythrocyte chromatin to specific antibodies as a function of chromatin structure. Antibodies to the globular domain of H5 as well as their Fab fragments were found to react with chromatin at ionic strengths ranging from 1-80 mM NaCl, the reaction gradually decreasing upon increase of salt concentration. If, however, Fab fragments were conjugated to ferritin, no reaction of the complex with chromatin was observed at salt concentrations higher than 20 mM. The accessibility of the globular part of H5 in unfolded chromatin to the Fab-ferritin complex was also demonstrated with trypsin-digested chromatin. The experiments were carried out by both solid-phase immunoassay and inhibition experiments. The data obtained are consistent with a structure in which the globular domain of H5 is internally located in the 30 nm chromatin fiber.  相似文献   

13.
The chromatin structure in solution has been studied by the flow linear dichroism method (LD) in a wide range of ionic strengths. It is found that increasing the ionic strength from 0.25 mM Na2EDTA, pH 7.0 to 100 mM NaCl leads to a strong reduction of the LD amplitude of chromatin and inversion of the LD sign from negative to positive at 2 mM NaCl. Chromatin exhibits a positive LD maximum value at 10-20 mM NaCl. These data enable us to conclude that in very low ionic strength (0.25 mM Na2EDTA) the nucleosome discs are oriented with their flat faces more or less parallel to the chromatin filament axis. Increasing ionic strength up to 20 mM NaCl leads to reorientation of the nucleosome discs and to formation of chromatin structures with nucleosome flat faces inclined to the fibril axis. A conformational transition of that kind is not revealed in H1-depleted chromatin. The condensation of the chromatin filaments with increasing concentration of NaCl from 20 mM to 100 mM slightly influences the orientation of the nucleosomes.  相似文献   

14.
The salt-dependent structural changes of the histone octamer in complex with high-molecular-weight DNA have been studied by fluorescent spectroscopy. Changes in both the spectra maximum position and anisotropy of the histone tyrosine fluorescence reveal structural transitions in nucleosome within the ranges of 0.5-3 mM and 20-30 mM NaCl. Comparison of the octamer fluorescent parameters in complex with DNA as well as in a free state permits to interpret the revealed structural transitions as a change in degree of contacts stability between (H2A-H2B) dimer and (H3-H4)2 tetramer. More pronounced conformational changes in histone octamer are observed under the conditions of polynucleosome fibers interaction within the range of physiological ionic strength (100-600 mM NaCl). As far as fluorescent parameters are concerned, the aforementioned changes are connected with entire destruction of (H2A-H2B) dimer specific contacts with (H3-H4)2 tetramer. The obtained results suggest the possibility of existence of different structural states of histone octamer in the chromatin composition including those which are quite dissimilar from the octamer structure in the 2M NaCl solution.  相似文献   

15.
Influence of histone H1 on chromatin structure   总被引:31,自引:0,他引:31  
F Thoma  T Koller 《Cell》1977,12(1):101-107
Removal of histone H1 produces a transition in the structure of chromatin fibers as observed by electron microscopy. Chromatin containing all histone proteins appears as fibers with a diameter of about 250 A. The nucleosomes within these fibers are closely packed. If histone H1 is selectively removed with 50-100 mM NaCl in 50 mM sodium phosphate buffer (pH 7.0) in the presence of the ion-exchange resin AG 50 W - X2, chromatin appears as "beads-on-a-string" with the nucleosomes separated from each other by distances of about 150-200 A. If chromatin is treated in the presence of the resin with NaCl at concentrations of 650 mM or more, the structural organization of the chromatin is decreased, yielding fibers of irregular appearance.  相似文献   

16.
The size distribution of chromatin fragments released by micrococcal nuclease digestion of liver chromatin at various ionic strengths was examined. Below 20 mM ionic strength, gradient profiles with a peak centered at 6 nucleosomes are generated, whereas between 20 and 50 mM the peak is always centered on 12 nucleosomes, and above 50 mM ionic strength the 30-nm fiber becomes less accessible to the nuclease and there is a corresponding increase in the size distribution of fragments in the gradients. However, extensive digestions always give profiles with a peak of 12 nucleosomes as nuclease-resistant dodecamers accumulate. All of these observations are consistent with the winding of the 10-nm polynucleosome chain into a helical coil commencing at about 20 mM ionic strength. The helical turns are stabilized by histone H1 interactions between 20 and 50 mM ionic strength producing stable dodecamers. Above 50 mM ionic strength the coil condenses longitudinally and the profiles are consistent with a random attack of this fiber by the nuclease. Consequently it is not necessary to invoke the existence of a subunit bead to explain the profiles. We further define the conditions at which specific structural transitions take place and provide methodology for the preparation of chromatin at various levels of condensation.  相似文献   

17.
Sedimentation analysis has been used to compare the structure of 30-nm chromatin fibers, isolated and digested under conditions that maintain the native structure, with relaxed-refolded chromatin. The native chromatin fibers show sharp, ionic strength-dependent changes in sedimentation coefficient that are not apparent in relaxed-refolded fibers. The first transition at approximately 20 mM ionic strength reflects the organization of the 10-nm polynucleosome chain into a loose helically coiled 30-nm fiber. Between 20 and 60 mM ionic strength there is considerable interaction between nucleosomes within the coils to generate a stable helical array with 12 nucleosomes/turn. Above 60 mM ionic strength the helical coil continues to condense until it precipitates at ionic strengths slightly greater than those considered physiological, indicating that there is no end point in fiber formation. The data is incompatible with a solenoid model with 6 nucleosomes/turn and also rules out the existence of a beaded subunit structure.  相似文献   

18.
M Kubista  T H?rd  P E Nielsen  B Nordén 《Biochemistry》1985,24(23):6336-6342
We have studied the structure of nuclease-solubilized chromatin from Ehrlich ascites cells by flow linear dichroism (LD) using the anisotropic absorption of the DNA bases and of two intercalated dyes, ethidium bromide and methylene blue. It is confirmed that intercalation occurs preferentially in the linker part of the chromatin fiber, at binding ratios (dye/base) below 0.020. Using this information, we determined the orientation of the linker in relation to the average DNA organization in chromatin. The LD measurements indicate that the conformation of chromatin is considerably changed in the ionic strength interval 0.1-10 mM NaCl: with increasing salt concentration, the LD of the intrinsic DNA base absorption changes signs, from negative to positive, at approximately 2.5 mM NaCl. The LD of the intercalated dyes also changes signs, however, at a somewhat higher salt concentration. The results are analyzed in terms of possible allowed combinations of tilt angles of nucleosomes and pitch or tilt angles of linker DNA sections relative to the fiber axis, at different salt concentrations in the interval 0.1-10 mM NaCl. Two models for the salt-induced structural change of chromatin are discussed.  相似文献   

19.
We have attacked H1-containing soluble chromatin by α-chymotrypsin under conditions where chromatin adopts different structures.Soluble rat liver chromatin fragments depleted of non-histone components were digested with α-chymotrypsin in NaCl concentrations between 0 mm and 500 mm. at pH 7, or at pH 10, or at pH 7 in the presence of 4 m-urea. α-Chymotrypsin cleaves purified rat liver histone H1 at a specific initial site (CT) located in the globular domain and produces an N-terminal half (CT-N) which contains most of the globular domain and the N-terminal tail, and a C-terminal half (CT-C) which contains the C-terminal tail and a small part of the globular domain. Since in sodium dodecyl sulfate/polyacrylamide-gel electrophoresis CT-C migrates between the core histones and H1, cleavage of chromatin-bound H1 by α-chymotrypsin can be easily monitored.The CT-C fragment was detected under conditions where chromatin fibers were unfolded or distorted: (1) under conditions of H1 dissociation at 400 mm and 500 mm-NaCl (pH 7 and 10); (2) at very low ionic strength where chromatin is unfolded into a filament with well-separated nucleosomes; (3) at pH 10 independent of the ionic strength where chromatin never assumes higher order structures; (4) in the presence of 4 m-urea (pH 7), again independent of the ionic strength. However, hardly any CT-C fragment was detected under conditions where fibers are observed in the electron microscope at pH 7 between 20 mm and 300 mm-NaCl. Under these conditions H1 is degraded by α-chymotrypsin into unstable fragments with a molecular weight higher than that of CT-C. Thus, the data show that there are at least two different modes of interaction of H1 in chromatin which correlate with the physical state of the chromatin.Since the condensation of chromatin into structurally organized fibers upon raising the ionic strength starts by internucleosomal contacts in the fiber axis (zig-zag-shaped fiber), where H1 appears to be localized, it is likely that in chromatin fibers the preferential cleavage site for α-chymotrypsin is protected because of H1-H1 contacts. The data suggest that the globular part of H1 is involved in these contacts close to the fiber axis. They appear to be hydrophobic and to be essential for the structural organization of the chromatin fibers. Based on the present and earlier observations we propose a model for H1 in which the globular domains eventually together with the N-terminal tails form a backbone in the fiber axis, and the nucleosomes are mainly attached to this polymer by the C-terminal tails.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号