首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders, which can be divided into 2 subgroups: isolated hereditary optic atrophies and optic neuropathies as part of complex disorders. In the first group of isolated hereditary optic neuropathies, optic nerve dysfunction is typically the only manifestation of the disease. This group comprises autosomal dominant, autosomal recessive and X-linked recessive optic atrophy, and the mitochondrial inherited Leber’s hereditary optic neuropathy (LHON). In the second group of complex disorders, various neurologic and other systemic abnormalities are regularly observed. The most frequent cause in this group are mitochondrial DNA (mtDNA) mutations, inherited peripheral neuropathies, Charcot–Marie–Tooth disorders (CMT2A2, CMTX5), hereditary sensory neuropathy type 3 (HSAN3), Friedreich ataxia, leukodystrophies, sphingolipidoses, ceroid-lipofuscinoses, and neurodegeneration with brain iron accumulation (NBIA). In the present article, the clinical phenotypes and underlying genetic predispositions are described.  相似文献   

2.
Leber hereditary optic neuropathy (LHON) is an inherited form of bilateral optic atrophy in which the primary etiological event is a mutation in the mitochondrial genome. The optic neuropathy involves a loss of central vision due to degeneration of the retinal ganglion cells and optic nerve axons that subserve central vision. The primary mitochondrial mutation is necessary—but not sufficient—for development of the optic neuropathy, and secondary genetic and/or epigenetic risk factors must also be present although they are poorly defined at the present time. There is broad agreement that mutations at nucleotides 3460, 11778, and 14484 are primary LHON mutations, but there may also be other rare primary mutations. It appears that the three primary LHON mutations are associated with respiratory chain dysfunction, but the derangements may be relatively subtle. There is also debate on whether there are mitochondrial mutations that have a secondary etiological or pathogenic role in LHON. The specific pattern of the optic neuropathy may arise from a chokepoint in the optic nerve in the region of the nerve head and lamina cribosa, and which may be more severe in those LHON family members who become visually affected. It is hypothesized that the respiratory chain dysfunction leads to axoplasmic stasis and swelling, thereby blocking ganglion cell function and causing loss of vision. In some LHON patients, this loss of function is reversible in a substantial number of ganglion cells, but in others, a cell death pathway (probably apoptotic) is activated with subsequent extensive degeneration of the retinal ganglion cell layer and optic nerve.  相似文献   

3.
Since the early days of mitochondrial medicine, it has been clear that optic atrophy is a very common and sometimes the singular pathological feature in mitochondrial disorders. The first point mutation of mitochondrial DNA (mtDNA) associated with the maternally inherited blinding disorder, Leber's hereditary optic neuropathy (LHON), was recognized in 1988. In 2000, the other blinding disorder, dominant optic atrophy (DOA) Kjer type, was found associated with mutations in the nuclear gene OPA1 that encodes a mitochondrial protein. Besides these two non-syndromic optic neuropathies, optic atrophy is a prominent feature in many other neurodegenerative diseases that are now recognized as due to primary mitochondrial dysfunction.We will consider mtDNA based syndromes such as LHON/dystonia/Mitochondrial Encephalomyopahty Lactic Acidosis Stroke-like (MELAS)/Leigh overlapping syndrome, or nuclear based diseases such as Friedreich ataxia (mutations in FXN gene), deafness-dystonia-optic atrophy (Mohr-Tranebjerg) syndrome (mutations in TIMM8A), complicated hereditary spastic paraplegia (mutations in SPG7), DOA “plus” syndromes (mutations in OPA1), Charcot-Marie-Tooth type 2A (CMT2A) with optic atrophy or hereditary motor and sensory neuropathy type VI (HMSN VI) (mutations in MFN2), and Costeff syndrome and DOA with cataract (mutations in OPA3). Thus, genetic errors in both nuclear and mitochondrial genomes often lead to retinal ganglion cell death, a specific target for mitochondrial mediated neurodegeneration. Many mechanisms have been studied and proposed as the bases for the pathogenesis of mitochondrial optic neuropathies including bioenergetic failure, oxidative stress, glutamate toxicity, abnormal mitochondrial dynamics and axonal transport, and susceptibility to apoptosis.  相似文献   

4.
Mitochondrial dysfunction in Wolfram Syndrome (WS) is controversial and optic neuropathy, a cardinal clinical manifestation, is poorly characterized. We here describe the histopathological features in postmortem retinas and optic nerves (ONs) from one patient with WS, testing the hypothesis that mitochondrial dysfunction underlies the pathology. Eyes and retrobulbar ONs were obtained at autopsy from a WS patient, and compared with those of a Leber hereditary optic neuropathy (LHON) patient and one healthy control. Retinas were stained with hematoxylin & eosin for general morphology and ONs were immunostained for myelin basic protein (MBP). Immunostained ONs were examined in four “quadrants”: superior, inferior, nasal, and temporal. The WS retinas displayed a severe loss of retinal ganglion cells in the macular region similar to the LHON retina, but not in the control. The WS ONs, immunostained for MBP, revealed a zone of degeneration in the temporal and inferior quadrants. This pattern was similar to that seen in the LHON ONs but not in the control. Thus, the WS patient displayed a distinct pattern of optic atrophy observed bilaterally in the temporal and inferior quadrants of the ONs. This arrangement of axonal degeneration, involving primarily the papillomacular bundle, closely resembled LHON and other mitochondrial optic neuropathies, supporting that mitochondrial dysfunction underlies its pathogenesis.  相似文献   

5.
Katarzyna Tońska  Agata Kodroń  Ewa Bartnik 《BBA》2010,1797(6-7):1119-1123
Leber hereditary optic neuropathy (LHON), acute or subacute vision loss due to retinal ganglion cell death which in the long run leads to optic nerve atrophy is one of the most widely studied maternally inherited diseases caused by mutations in mitochondrial DNA. Although three common mutations, 11778G>A, 14484T>C or 3460G>A are responsible for over 90% of cases and affect genes encoding complex I subunits of the respiratory chain, their influence on bioenergetic properties of the cell is marginal and cannot fully explain the pathology of the disease. The following chain of events was proposed, based on biochemical and anatomical properties of retinal ganglion cells whose axons form the optic nerve: mitochondrial DNA mutations increase reactive oxygen species production in these sensitive cells, leading to caspase-independent apoptosis. As LHON is characterized by low penetrance and sex bias (men are affected about 5 times more frequently than women) the participation of the other factors—genetic and environmental—beside mtDNA mutations was studied. Mitochondrial haplogroups and smoking are some of the factors involved in the complex etiology of this disease.  相似文献   

6.
神经细胞的特化之一是其轴突,长度可达胞体直径的几百甚至几千倍.轴浆转运维系着胞体和轴突终末之间大量的物质交流,保证神经细胞发挥正常功能.轴浆转运障碍可以导致神经细胞功能受损直至凋亡.在一些视神经疾病中,轴浆转运功能的改变是最早出现的症状,因此也可能成为治疗的潜在靶点.在青光眼和视神经缺血的动物模型中,轴浆转运功能的下降是最早出现的变化之一.而Leber's遗传性视神经病变(LHON)和常染色体显性视神经萎缩(ADOA)是已知线粒体功能障碍引起的视神经疾病.不难想象,长距离轴浆转运功能对能量代谢尤其敏感,因此在LHON和ADOA中可能也有不同程度的下降,但似乎并没有受到足够关注.本文首先回顾了微管和马达蛋白在轴浆转运中的作用,比较分析以上所述几种疾病的发病机制、临床表现及治疗手段,试图发现它们之间的共同特点以及这些特点与能量代谢、轴浆转运之间的潜在关系,为其治疗提供新的思路.  相似文献   

7.
Leber's hereditary optic neuropathy (LHON) was the first maternally inherited disease to be associated with point mutations in mitochondrial DNA and is now considered the most prevalent mitochondrial disorder. The pathology is characterized by selective loss of ganglion cells in the retina leading to central vision loss and optic atrophy, prevalently in young males. The pathogenic mtDNA point mutations for LHON affect complex I with the double effect of lowering the ATP synthesis driven by complex I substrates and increasing oxidative stress chronically. In this review, we first consider the biochemical changes associated with the proton-translocating NADH-quinone oxidoreductase of mitochondria in cybrid cells carrying the most common LHON mutations. However, the LHON cybrid bioenergetic dysfunction is essentially compensated under normal conditions, i.e. in glucose medium, but is unrevealed by stressful conditions such as growing cybrids in glucose free/galactose medium, which forces cells to rely only on respiratory chain for ATP synthesis. In fact, the second part of this review deals with the investigation of LHON cybrid death pathway in galactose medium. The parallel marked changes in antioxidant enzymes, during the time-course of galactose experiments, also reveal a relevant role played by oxidative stress. The LHON cybrid model sheds light on the complex interplay amongst the different levels of biochemical consequences deriving from complex I mutations in determining neurodegeneration in LHON, and suggests an unsuspected role of bioenergetics in shaping cell death pathways.  相似文献   

8.
Ocular involvement is a prevalent feature in mitochondrial diseases. Leber’s hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA) are both non-syndromic optic neuropathies with a mitochondrial etiology. LHON is associated with point mutations in the mitochondrial DNA (mtDNA), which affect subunit genes of complex I. The majority of DOA patients harbor mutations in the nuclear-encoded protein OPA1, which is targeted to mitochondria and participates to cristae organization and mitochondrial network dynamics. In both disorders the retinal ganglion cells (RGCs) are specific cellular targets of the degenerative process. We here review the clinical features and the genetic bases, and delineate the possible common pathomechanism for both these disorders.  相似文献   

9.
Leber’s hereditary optic neuropathy (LHON) is an inherited disease caused by mutations in complex I of the mitochondrial respiratory chain. The disease is characterized by loss of central vision due to retinal ganglion cell (RGC) dysfunction and optic nerve atrophy. Despite progress towards a better understanding of the disease, no therapeutic treatment is currently approved for this devastating disease. Idebenone, a short-chain benzoquinone, has shown promising evidence of efficacy in protecting vision loss and in accelerating recovery of visual acuity in patients with LHON. It was therefore of interest to study suitable LHON models in vitro and in vivo to identify anatomical correlates for this protective activity. At nanomolar concentrations, idebenone protected the rodent RGC cell line RGC-5 against complex I dysfunction in vitro. Consistent with the reported dosing and observed effects in LHON patients, we describe that in mice, idebenone penetrated into the eye at concentrations equivalent to those which protected RGC-5 cells from complex I dysfunction in vitro. Consequently, we next investigated the protective effect of idebenone in a mouse model of LHON, whereby mitochondrial complex I dysfunction was caused by exposure to rotenone. In this model, idebenone protected against the loss of retinal ganglion cells, reduction in retinal thickness and gliosis. Furthermore, consistent with this protection of retinal integrity, idebenone restored the functional loss of vision in this disease model. These results support the pharmacological activity of idebenone and indicate that idebenone holds potential as an effective treatment for vision loss in LHON patients.  相似文献   

10.
Three prevalent mitochondrial DNA pathogenic mutations at positions 11778, 3460, and 14484, which affect different subunits of Complex I, cause retinal ganglion cell death and optic nerve atrophy in Leber's hereditary optic neuropathy (LHON). The cell death is painless and without inflammation, consistent with an apoptotic mechanism. We have investigated the possibility that the LHON mutation confers a pro-apoptotic stimulus and have tested the sensitivity of osteosarcoma-derived cybrid cells carrying the most common and severe mutations (11778 and 3460) to cell death induced by Fas. We observed that LHON cybrids were sensitized to Fas-dependent death. Control cells that bear the same mitochondrial genetic background (the J haplogroup) without the pathogenic 11778 mutation are no more sensitive than other controls, indicating that increased Fas-dependent death in LHON cybrids was induced by the LHON pathogenic mutations. The type of death was apoptotic by several criteria, including induction by Fas, inhibition by the caspase inhibitor zVAD-fmk (zVal-Ala-Asp-fluoro-methyl ketone), activation of DEVDase activity (Asp-Glu-Val-Asp protease), specific cleavage of caspase-3, DNA fragmentation, and increased Annexin-V labeling. These data indicate that the most common and severe LHON pathogenic mutations 11778 and 3460 predispose cells to apoptosis, which may be relevant for the pathophysiology of cell death in LHON, and potential therapy.  相似文献   

11.
Leber hereditary optic neuropathy is a maternally inherited type of blindness caused by degeneration of the optic nerve. It is caused by point mutations in mitochondrial DNA. Like in other mitochondrial diseases, its penetrance and inheritance is complicated by heteroplasmy, tissue distribution, and the bottleneck phenomenon in oocyte maturation. On the cellular level, the mechanism of the disease development is still mysterious. Currently three theories of pathomechanism of LHON are considered: biochemical, ROS (reactive oxygen species) and apoptotic.  相似文献   

12.
Qian Y  Zhou X  Liang M  Qu J  Guan MX 《Mitochondrion》2011,11(6):871-877
The ND4 G11778A mutation is the most common mitochondrial DNA mutation leading to Leber's hereditary optic neuropathy (LHON). Despite considerable clinical evidences, the modifier role of nuclear background and mitochondrial haplotypes in phenotypic manifestation of LHON remains poorly understood. We investigated the effect of these modifiers on bioenergetics in lymphoblastoid cell lines derived from five affected subjects of one Chinese family carrying the G11778A mutation and five Chinese controls. Significant reductions in the activities of complexes I and III were observed in mutant cell lines from the Chinese family, whereas the mutant cell lines from other families carrying the same mutation exhibited only reduced activity of complex I. The reduced activities of complexes I and III caused remarkably higher reductions of ATP synthesis in mutant cell lines from the Chinese family than those from other families. The deficient respiration increased generation of reactive oxygen species. The defect in complex III activity, likely resulting from the mitochondrial haplotype or nuclear gene alteration, worsens mitochondrial dysfunction caused by the G11778A mutation, thereby causing extremely high penetrance and expressivity of optic neuropathy in this Chinese family. Our data provide the first experimental evidence that altered activity of complex III modulates the phenotypic manifestation of LHON-associated G11778A mutation. Thus, our findings may provide new insights into the pathophysiology of LHON.  相似文献   

13.
Leber’s hereditary optic neuropathy (LHON) is characterized by retinal ganglion cell (RGC) degeneration with the preferential involvement of those forming the papillomacular bundle. The optic nerve is considered the main pathological target for LHON. Our aim was to investigate the possible involvement of the post-geniculate visual pathway in LHON patients. We used diffusion-weighted imaging for in vivo evaluation. Mean diffusivity maps from 22 LHON visually impaired, 11 unaffected LHON mutation carriers and 22 healthy subjects were generated and compared at level of optic radiation (OR). Prefrontal and cerebellar white matter were also analyzed as internal controls. Furthermore, we studied the optic nerve and the lateral geniculate nucleus (LGN) in post-mortem specimens obtained from a severe case of LHON compared to an age-matched control. Mean diffusivity values of affected patients were higher than unaffected mutation carriers (P<0.05) and healthy subjects (P<0.01) in OR and not in the other brain regions. Increased OR diffusivity was associated with both disease duration (B = 0.002; P<0.05) and lack of recovery of visual acuity (B = 0.060; P<0.01). Post-mortem investigation detected atrophy (41.9% decrease of neuron soma size in the magnocellular layers and 44.7% decrease in the parvocellular layers) and, to a lesser extent, degeneration (28.5% decrease of neuron density in the magnocellular layers and 28.7% decrease in the parvocellular layers) in the LHON LGN associated with extremely severe axonal loss (99%) in the optic nerve. The post-geniculate involvement in LHON patients is a downstream post-synaptic secondary phenomenon, reflecting de-afferentation rather than a primary neurodegeneration due to mitochondrial dysfunction of LGN neurons.  相似文献   

14.
The OPA1 gene, encoding a dynamin-like mitochondrial GTPase, is involved in autosomal dominant optic atrophy (ADOA, OMIM #165500). ADOA, also known as Kjer's optic atrophy, affects retinal ganglion cells and the axons forming the optic nerve, leading to progressive visual loss. OPA1 gene sequencing in patients with hereditary optic neuropathies indicates that the clinical spectrum of ADOA is larger than previously thought. Specific OPA1 mutations are responsible for several distinct clinical presentations, such as ADOA with deafness (ADOAD), and severe multi-systemic syndromes, the so-called “ADOA plus” disorders, which involve neurological and neuromuscular symptoms similar to those due to mitochondrial oxidative phosphorylation defects or mitochondrial DNA instability. The study of the various clinical presentations of ADOA in conjunction with the investigation of OPA1 mutations in fibroblasts from patients with optic atrophy provides new insights into the pathophysiological mechanisms of the disease while underscoring the multiple physiological roles played by OPA1 in energetic metabolism, mitochondrial structure and maintenance, and cell death. Finally, OPA1 represents an important new paradigm for emerging neurodegenerative diseases affecting mitochondrial structure, plasticity and functions.  相似文献   

15.
A number of human diseases have been attributed to defects in oxidative phosphorylation (OXPHOS) resulting from mutations in the mitochondrial DNA (mtDNA). One such disease is Leber's hereditary optic neuropathy (LHON), a neurodegenerative disease of young adults that results in blindness due to atrophy of the optic nerve. The etiology of LHON is genetically heterogeneous and in some cases multifactorial. Eleven mtDNA mutations have been associated with LHON, all of which are missense mutations in the subunit genes for the subunits of the electron transport chain complexes I, III, and IV. Molecular, biochemical, and population genetic studies have categorized these mutations as high risk (class I), low risk (class II), or intermediate risk (class I/II). Class I mutations appear to be primary genetic causes of LHON, while class II mutations are frequently found associated with class I genotypes and may serve as exacerbating genetic factors. Different LHON pedigrees can harbor different combinations of class I, II, or I/II mtDNA mutations, as shown by the complete sequence analysis of the mtDNAs of four LHON probands. The various mtDNA genotypes included an isolated class I mutation, combined class I+II mutations, and combined class I/II+II mutations. The occurrence of such genotypes supports the hypothesis that LHON may result from the additive effects of various genetic and environmental insults to OXPHOS, each of which increases the probability of blindness.  相似文献   

16.
Leber’s hereditary optic neuropathy (LHON) refers to a group of mitochondrial diseases and is characterized by defects of the mitochondrial electron transport chain and decreased level of oxidative phosphorylation. The list of LHON primary mtDNA mutations is regularly updated. In this study, we describe the homoplasmic nucleotide substitution m.3472T>C in the MT-ND1 (NADH-ubiquinone oxidoreductase chain 1) gene and specific changes in cell metabolism in a patient with LHON and his asymptomatic sister. To confirm the presence of mutation-related mitochondrial dysfunction, respiration of skin fibroblasts and platelets from the patient and his sister was studied, as well as the mitochondrial potential and production of reactive oxygen species in the skin fibroblasts. In addition, based on characteristics of the toxic effect of paraquat, a new approach was developed for detecting the functional activity of complex I of the mitochondrial respiratory chain.  相似文献   

17.
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.  相似文献   

18.
Leber’s hereditary optic neuropathy (LHON) is an optic nerve dysfunction resulting from mutations in mitochondrial DNA (mtDNA), which is transmitted in a maternal pattern of inheritance. It is caused by three primary point mutations: G11778A, G3460A and T14484C; in the mitochondrial genome. These mutations are sufficient to induce the disease, accounting for the majority of LHON cases, and affect genes that encode for the different subunits of mitochondrial complexes I and III of the mitochondrial respiratory chain. Other mutations are secondary mutations associated with the primary mutations. The purpose of this study was to determine MT-ND variations in Iranian patients with LHON. In order to determine the prevalence and distribution of mitochondrial mutations in the LHON patients, their DNA was studied using PCR and DNA sequencing analysis. Sequencing of MT-ND genes from 35 LHON patients revealed a total of 44 nucleotide variations, in which fifteen novel variations—A14020G, A13663G, C10399T, C4932A, C3893G, C10557A, C12012A, C13934T, G4596A, T12851A, T4539A, T4941A, T13255A, T14353C and del A 4513—were observed in 27 LHON patients. However, eight patients showed no variation in the ND genes. These mutations contribute to the current database of mtDNA polymorphisms in LHON patients and may facilitate the definition of disease-related mutations in human mtDNA. This research may help to understand the disease mechanism and open up new diagnostic opportunities for LHON.  相似文献   

19.
A 23-years-old male entered a safety clinical trial for cetirizine (a selective histamine H(1)-receptor antagonist) in combination with the antibiotic erythromycin. Within a few weeks of finishing the trial, the patient reported bilateral vision loss with optic nerve atrophy. Genetic studies showed that he had a mitochondrial DNA (mtDNA) mutation at position 11778 (within the gene for subunit 4 of NADH-coenzyme Q oxidoreductase), commonly associated with Leber's hereditary optic neuropathy. To test if erythromycin could worsen the mitochondrial respiratory chain defect associated with the 11778 mtDNA mutation, we transferred the patient's mtDNA to cultured mtDNA-less osteosarcoma cells. Erythromycin inhibited proliferation of the patient's transmitochondrial cybrids in conditions that required mitochondrial respiration for growth. We confirmed that erythromycin is a potent inhibitor of mitochondrial translation in these cells. Taken together, these results suggest that erythromycin may have hastened a bioenergetics crisis in the optic nerve of this patient. This association underscores the importance of being cautious with the use of drugs that interfere with cellular respiration in individuals with an underlying mitochondrial dysfunction.  相似文献   

20.
Leber's hereditary optic neuropathy (LHON) is characterized by maternally transmitted, bilateral, central vision loss in young adults. It is caused by mutations in the mitochondrial DNA (mtDNA) encoded genes that contribute polypeptides to NADH dehydrogenase or complex I. Four mtDNA variants, the nucleotide pair (np) 3460A, 11778A, 14484C, and 14459A mutations, are known as "primary" LHON mutations and are found in most, but not all, of the LHON families reported to date. Here, we report the extensive genetic and biochemical analysis of five Russian families from the Novosibirsk region of Siberia manifesting maternally transmitted optic atrophy consistent with LHON. Three of the five families harbor known LHON primary mutations. Complete sequence analysis of proband mtDNA in the other two families has revealed novel complex I mutations at nps 3635A and 4640C, respectively. These mutations are homoplasmic and have not been reported in the literature. Biochemical analysis of complex I in patient lymphoblasts and transmitochondrial cybrids demonstrated a respiration defect with complex-I-linked substrates, although the specific activity of complex I was not reduced. Overall, our data suggests that the spectrum of mtDNA mutations associated with LHON in Russia is similar to that in Europe and North America and that the np 3635A and 4640C mutations may be additional mtDNA complex I mutations contributing to LHON expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号