首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study on the bacterioplankton of Conceição Lagoon (27°34′ S–48°27′ W), Southern Brazil, was carried out in July 2005 (austral winter) and January 2006 (austral summer) to characterize the bacterial spatiotemporal distribution and to determine the heterotrophic and photoautotrophic bacterial dominance in hypoxic/oxic stratified waters. Bacterial abundance increased significantly (p?5 (winter) to 3.21?×?106 cells mL?1 (summer), heterotrophic coccus/rod-shaped (HCR) cells from 7.00?×?104 to 3.60?×?106 cells mL?1, and heterotrophic filamentous (HF) bacteria from 2.90?×?103 to 2.74?×?105 cells mL?1. Bacterial biovolumes also increased in summer with mean biovolumes of CCY ranging from 0.38 to 1.37 μm3, HCR cells from 0.31 to 1.12 μm3, and HF from 3.32 to 11.34 μm3. Principal component analysis showed that salinity, temperature, and light were the abiotic factors that better explained the temporal variability of bacterial assemblages. Bacterial heterotrophy dominated in the lagoon, excepted by the southern and part of central sector in January 2006, when autotrophic-dominated microbial community occurred. Spatially, bacterial assemblages were influenced by nutrient gradient, oxygen, and salinity with a positive relationship between biovolumes and nutrients and a negative relationship between abundance of coccus cyanobacteria and nutrients. area revealed a singular temporal pattern with hypoxic bottom waters in winter and oxygen-rich waters appearing in summer related with the availability of light and predominant microbes. Thus, oxygen consumption/production is likely to be regulated by the amount of light reaching the bottom, stimulating the production of oxygen by oxygenic phototrophs.  相似文献   

2.
1. The temporal abundance and composition of the plankton of a continental Antarctic lake (Lake Druzhby) situated in the Vestfold Hills, Eastern Antarctica was investigated from December 1992 to December 1993. The system was dominated by microbial plankton (cyanobacteria, heterotrophic bacteria and protozoans) with few metazoans. 2. Chlorophyll a concentrations ranged between 0.15 and 1.1 μg l–1 and showed highest levels from late winter to spring. 3. Heterotrophic bacteria ranged between 75 and 250 × 106 l–1 with highest abundances in late winter/spring. Mean bacterial biovolumes showed considerable seasonal variation (0.05–0.31 μm3). Largest biovolumes occurred in summer and this was the time of highest community biomass. 4. Heterotrophic nanoflagellates reached highest abundances in late summer (maximum 14 × 105 l–1). Their mean biovolume also exhibited considerable seasonal variation, ranging between 1.77 and 27.0 μm3, with largest size resulting in community biomass peaking in early summer. Ciliated protozoa were poorly represented and sparse. Phototrophic nanoflagellates were sparse in this lake; instead the phototrophic plankton was dominated by a small rod-shaped cyanobacterium which constituted the largest carbon pool in the system. It was common throughout the year, its biomass peaking in autumn. Its presence is discussed in relation to lake morphometry and light climate. 5. Heterotrophic flagellate grazing rates ranged from 6.78 bacteria cell–1 day–1 at 2 °C to 11.8 bacteria cell–1 day–1 at 4 °C. They remove around 2% of the bacterial carbon pool per day during summer and winter. 6. Nutrient levels were low and recorded in pulses. Dissolved and particulate organic carbon were also low, usually less than 3 mg l–1 and 600 μg l–1, respectively. The carbon pools were derived from autochthonous sources. This lake system is driven by bottom-up forces and lacks top-down control, which fits into the picture currently seen for continental Antarctic lakes.  相似文献   

3.
Autotrophic picoplankton were highly abundant during the thermalstratification period in late July in the pelagic area (waterdepth 500–1300 m) of southern Lake Baikal; maximum numberswere 2 x 106 cells ml–1 in the euphotic zone ({small tilde}15m). Unicellular cyanobacteria generally dominated the picoplanktoncommunity, although unidentified picoplankton that fluorescedred under blue excitation were also abundant (maximum numbers4 x 105 cells ml–1) and contributed up to {small tilde}40%of the total autotrophic picoplankton on occasions. Carbon andnitrogen biomasses of autotrophic picoplankton estimated byconversion from biovolumes were 14–84 µg C l–1and 3.6–21 µg N l–1. These were comparableto or exceeded the biomass of heterotrophic bacteria. Autotropicpicoplankton and bacteria accounted for as much as 33% of paniculateorganic carbon and 81% of nitrogen in the euphotic zone. Measurementsof the photosynthetic uptake of [l4C]bicarbonate and the growthof picoplankton in diluted or size-fractionated waters revealedthat 80% of total primary production was due to picoplankton,and that much of this production was consumed by grazers inthe <20 µ.m cell-size category. These results suggestthat picoplankton-protozoan trophic coupling is important inthe pelagic food web and biogeochemical cycling of Lake Baikalduring summer.  相似文献   

4.
The spatial distributions of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), DMSP-lyase activity (DLA) and their controlling factors including nutrients, phytoplankton community and bacterial abundance were investigated in the East China Sea (ECS) during fall from October 19 to November 2, 2015. Diatoms and dinoflagellates dominated the phytoplankton community, while other taxonomic groups were rare and mainly found in the oligotrophic open sea. Affected by the high nutrients concentrations, Chl a, DMS, DMSP and DLA showed high values in eutrophic inshore waters, and decreased from the costal zones to the open sea. Statistical analysis suggested that diatoms and dinoflagellates were the main controlling factors of DMS, DMSP, and DLA in ECS. For size-fractionated samples, a reduced contribution of the microplankton from inshore stations to offshore stations affected by the trophic conditions was noted. Meanwhile, this decrease in microplankton led to an increase in the ratio of DLA contributed by picoplankton and free-living bacteria from the estuary area to the offshore region. The DMS sea-to-air flux was calculated using the equation of Nightingale et al. (Glob Biogeochem Cy 14(1):373–387, 2000), and approximately 2.88 × 10?2 Tg of sulfur was transferred from the sea into the atmosphere in the form of DMS in ECS during fall.  相似文献   

5.
Bacterioplankton abundance and production, chlorophyll a (Chl a) concentrations and primary production (PP) were measured from the equatorial Indian Ocean (EIO) during northeast (NEM), southwest (SWM) and spring intermonsoon (SpIM) seasons from 1°N to 5°S along 83°E. The average bacterial abundance was 0.52 ± 0.29, 0.62 ± 0.33 and 0.46 ± 0.19 (× 108 cells l−1), respectively during NEM, SWM and SpIM in the top 100 m. In the deep waters (200 m and below), the bacterial counts averaged ∼0.35 ± 0.14 × 108 cells l−1 in SWM and 0.39 ± 0.16 × 108 cells l−1 in SpIM. The 0–120 m column integrated bacterial production (BP) ranged from 19 to 115 and from 10 to 51 mg C m−2 d−1 during NEM and SWM, respectively. Compared with many open ocean locations, bacterial abundance and production in this region are lower. The bacterial carbon production, however, is notably higher than that of phytoplankton PP (BP:PP ratio 102% in SWM and 188% in NEM). With perpetually low PP (NEM: 20, SWM: 18 and SpIM: 12 mg C m−2 d−1) and Chl a concentration (NEM: 16.5, SWM: 15.0 and SpIM: 20.9 mg m−2), the observed bacterial abundance and production are pivotal in the trophodynamics of the EIO. Efficient assimilation and mineralization of available organics by bacteria in the euphotic zone might serve a dual role in the ultra-oligotrophic regions including EIO. Thus, bacteria probably sustain microheterotrophs (micro- and meso-zooplankton) through microbial loop. Further, rapid mineralization by bacteria will make essential nutrients available to autotrophs.  相似文献   

6.
7.
Bacteria were counted with acridine orange epifluorescence technique in two humic lakes during 3 years. Less than 1% of the cells were found attached to detritus aggregates. 73% of the total number and 48% of the total volume were smaller than 1 µm. The mean cell volume ranged from 0.10 to 0.35 µm3 with the highest cell volumes occurring during early summer contemporarily with the growth of the bacterial biomass and probably indicating favourable growth conditions. The mean density of bacteria in oligotrophic brown-water lakes is higher than in oligotrophic clear-water lakes. The development of bacterial biomass showed a regular and seasonally dependent pattern with maxima during early summer and autumn. The importance of different factors for the regulation of bacterial biomass is discussed. Three different approaches were used to estimate bacterial production. These resulted in an average production rate of 15–60 µg C · l?1 · d?1 during the growing season. It was concluded that allochthonous sources comprised a significant part of the energy supply to the bacteria in the two humic lakes.  相似文献   

8.
Aims: This study was focused on the possibility to inactivate food‐borne pathogen Bacillus cereus by Na‐chlorophyllin (Na‐Chl)‐based photosensitization in vitro and after attachment to the surface of packaging material. Methods and Results: Bacillus cereus in vitro or attached to the packaging was incubated with Na‐Chl (7·5 × 10?8 to 7·5 × 10?5 mol l?1) for 2–60 min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400 nm and an energy density of 20 mW cm?2. The illumination time varied 0–5 min and subsequently the total energy dose was 0–6 J cm?2. The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5 × 10?7 mol l?1 Na‐Chl and following illumination were inactivated by 7 log. The photoinactivation of B. cereus spores in vitro by 4 log required higher (7·5 × 10?6 mol l?1) Na‐Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5 log at 7·5 × 10?5 mol l?1 Na‐Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by <1 log, 100 ppm Na‐hypochlorite reduces the pathogens about 1·7 log and 200 ppm Na‐hypochlorite by 2·2 log. Meanwhile, Na‐Chl‐based photosensitization reduces bacteria on the surface by 4·2 orders of magnitude. Conclusions: Food‐borne pathogen B. cereus could be effectively inactivated (7 log) by Na‐Chl‐based photosensitization in vitro and on the surface of packaging material. Spores are more resistant than vegetative cells to photosensitization‐based inactivation. Comparison of different surface decontamination treatments indicates that Na‐Chl‐based photosensitization is much more effective antibacterial tool than washing with water or 200 ppm Na‐hypochlorite. Significance and Impact of the Study: Our data support the idea that Na‐Chl‐based photosensitization has great potential for future application as an environment‐friendly, nonthermal surface decontamination technique.  相似文献   

9.
Lifetable demography and reproductive traits of a Kenyan strain of the rotifer Brachionus angularis were investigated using individual and small batch culture approaches. The rotifer was identified morphologically before conducting studies at 20, 25 and 30 °C, using Chlorella vulgaris at 2.5 × 105 to 2.5 × 107 cells ml–1. The rotifers were highly fecund, producing 2.11 ± 0.07 offspring female–1 day–1 and reproductive, producing 8.43 ± 0.24 offspring female–1 at 25 °C with 2.5 × 106 algal cells ml–1. The highest intrinsic rate of natural increase (0.74 ± 0.02 d–1), specific population growth rate (0.49 ± 0.01), longest life expectancy at hatching (12.41 ± 0.28 d) and shortest generation time (2.87 ± 0.03 d) also occurred at 25 °C with 2.5 × 106 algal cells ml–1. The duration of hatching to first spawning was shortest (2.86 ± 0.21 h) at 30 °C with 2.5 × 107 algal cells ml–1 and longest (8.83 ± 0.39 h) at 20 °C with 2.5 × 105 algal cells ml–1. The highest population density (255.7 ± 12.6 ind. ml–1) was realised at 25 °C with 2.5 × 106 cells ml–1 on Day 8, whereas the lowest population density (122.0 ± 3.6 ind. ml–1) was realised at 20 °C with 2.5 × 105 cells ml–1 on Day 8. The lorica length and width of the Kenyan strain of B. angularis are 85.6 ± 3.1 µm and 75.4 ± 3.6 µm, respectively. The rotifer optimally reproduces at 25 °C when fed with 2.5 × 106 algal cells ml–1.  相似文献   

10.
The F/R-ratio (litres of water filtered per ml of oxygen respired) was determined for the filter-feeding demosponge Halichondria panicea to be 15.5?l?H2O?(ml O2)?1 which was used to evaluate the potential of the sponge to nourish solely on nano- (2–20?µm) and micro- (20–200?µm) phytoplankton cells in the sea. It was estimated that in order to balance the maintenance requirement of H. panicea the necessary content of suspended particulate organic carbon must be at least 0.03?mg?C?l?1, which may be compared with actually reported values of 0.04 to 0.2?mg?C?l?1 thus implying that H. panicea may be able to nourish on a sole diet of phytoplankton in nature. However, the amount of carbon represented by free-living heterotrophic bacteria, cyanobacteria and other small (0.2–2?µm) picoplankton which are also accessible to the sponge lies in the range of 0.05–0.10?mg?C?l?1, and therefore bacteria seem to be an important, although in many cases apparently a somewhat insufficient food source relative to phytoplankton. Video-microscope observations of the osculum cross-sectional area (OSA) and simultaneous measurement of the filtration rate of H. panicea showed that the filtration rate varied considerably over time concurrently with often pronounced variations in the OSA caused by disturbance when the aquarium through-flow was stopped during filtration rate measurements in the laboratory. It is concluded that the optimal and undisturbed filtration rate may be considerably higher than measured here, i.e. 6.1?ml water (ml sponge)?1 min?1, thus increasing the F/R-ratio to > 15.5?l?H2O (ml O2)?1, which is comparable to values for more advanced eumetazoan filter-feeding marine invertebrates grazing on phytoplankton.  相似文献   

11.
The production ecology of Stephanodiscus astraea (Ehrenb.) Grun. is discussed with respect to other phytoplankton growths, mixing regimes and nutrient availability. Populations of Stephanodiscus were studied during 1972 and 1973 in an artificially mixed reservoir with a capacity of 3.5 × 107m3. Major nutrients such as soluble reactive phosphates (60–200 μg/1) and nitrates (1–8 mg/1) were not limiting. Large amounts of silicate (approximately 10 mg/1) were utilized to support moderately large populations of S. astraea (1.3 × 107 μm3/ml). Light penetration and mixing regimes strongly affected the periodicity and size of standing crops. It is suggested that heterotrophic production can interact with the mixing environment to influence the production of turbid waters.  相似文献   

12.
Temporal plankton dynamics in an oligotrophic maritime Antarctic lake   总被引:3,自引:0,他引:3  
  • 1 The population density, diversity and productivity of the microbial plankton in an oligotrophic maritime Antarctic lake were studied for a 15‐month period between December 1994 and February 1996.
  • 2 In the lake, concentrations of nutrients and dissolved organic carbon were uniformly low, temperature varied over a small annual range of 0.1–3 °C, and the surface was ice‐covered except during a period of approximately 6 weeks in summer.
  • 3 The total of 57 morphotypes of protozoa observed during the study is a higher taxonomic diversity than previously reported from continental Antarctic lakes, but lower than that found in more eutrophic maritime Antarctic lakes. Likewise, planktonic abundance and productivity were lower than has been reported in other lakes on Signy Island, but generally higher than those of lakes on the Antarctic continent.
  • 4 There were marked seasonal and interannual variations in planktonic population density.
  • 5 Chlorophyll a concentrations ranged from undetectable to 4.2 µg L‐1 and the greatest rate of primary productivity measured was 4.5 mg C m‐3 h‐1. The phytoplankton was dominated by small chlorophytes and chrysophytes, with phototrophic nanoflagellate abundance ranging from 1.1 × 103 to 1.2 × 107 L‐1.
  • 6 Bacterial densities of 3.6 × 108 to 1.9 × 1010 L‐1 were recorded and bacterial productivity reached a peak of 0.36 µg C L‐1 h‐1. Numbers of heterotrophic nanoflagellates between 5.0 × 104 and 1.8 × 107 L‐1, and of ciliates from undetectable to 1.1 × 104 L‐1 were observed. Naked amoebae were usually rare, but occasionally reached peaks of up to 1.5 × 103 L‐1.
  相似文献   

13.
Abundance and biomass of pico- (<2 μm) and nanoplankton (2–20 μm) were investigated in relation to hydrography in Kongsfjorden, Svalbard (79°N, 12°E) during late summer 2006. Autotrophic and heterotrophic picoplankton abundance ranged from 0.1 × 106 to 35.2 × 106 cells L−1 and from 0.4 × 106 to 20.3 × 106 cells L−1, respectively. The highest number of bacteria in the entire water column was recorded at station 2 at 10 m (22.3 × 108 cells L−1); the lowest concentration was observed at station 1 (6.0 × 108 cells L−1). The abundance of autotrophic and heterotrophic nanoplankton varied from 0.4 × 105 cells L−1 to 46 × 105 cells L−1 and from 0.3 × 106 to 9.1 × 106 cells L−1, respectively. Our results demonstrated that heterotrophic nanoflagellates and bacteria in Kongsfjorden microbial community were relatively important. The structure of plankton communities integrated with environmental variables could act as indicators of the variability of the inflow of Atlantic Water into Kongsfjorden.  相似文献   

14.
The Turkish freshwater lakes, Sapanca, Iznik and Taskisi (Calticak) have been enriched with nutrients from agriculture and domestic sources for many years. A major bloom of cyanobacteria (blue-green algae) in Lake Sapanca was recorded in May 1997, closely followed by a fish kill. Investigations were subsequently made on the cyanobacteria and water quality of the lakes, including analysis for cyanobacterial hepatotoxins (microcystins) in the filtered particulate fraction. Samples, taken from the beginning of May to end of August 1998, were analysed for microcystins by high–performance liquid chromatography with photodiode array detection (HPLC-PDA), protein phosphatase inhibition assay (PPIA) and an enzyme-linked immunosorbent assay (ELISA). No microcystins were detected in the water column in Lake Sapanca above 10 m, but toxins were found in filtered cyanobacterial samples from 20 m depth at a concentration of 3.65 μg l?1 microcystin–LR equivalents. Ninety percent of the microcystin pool detected in L. Sapanca was found between depths of 15 and 25 m. The principal microcystin detected by HPLC-PDA was similar to microcystin–RR. Two unidentified microcystin variants were found in Lake Taskisi surface samples at a concentration of 2.43 μg l?1 microcystin–LR equivalents in the filtered cyanobacterial cell fraction. Although 10 water samples (10 × 5 l) were taken from Lake Iznik (surface to 20 m, 5 m intervals), no microcystins were detected by HPLC-PDA (limit of detection 10 ng). The depth at which microcystins were detected in L. Sapanca coincided with the draw-off depth for the drinking water supply for the city of Sakarya  相似文献   

15.

Bacteria isolated from cobalt–enriched ferromanganese crusts on the Afanasiy Nikitin Seamounts in the Equatorial Indian Ocean were examined for their ability to tolerate, and immobilize cobalt in unamended seawater and seawater amended with 0.01% glucose. Retrievable bacterial counts in the form of CFU (colony forming units) on media supplemented with 1 mmol Co l?1 (58 mg Co l?1) and 1 mmol Mn l?1 (54 mg Mn l?1) were in the range of 1.71 × 104 to 1.05 × 105 gm?1 (wet wt) of crust, respectively. Most of the isolates (14/24) were pigmented and showed taxonomic affinities to Flavobacterium sp. Two representative isolates were tested for their tolerance of cobalt. We observed that in amended medium, the isolates tolerated up to 1 mmol Co l?1, whereas in unamended medium they tolerated upto 10 mmol Co l?1. Microscopic observations of cultures incubated with 10 mmol Co l?1 showed the occurrence of an extracellular slime layer, which may be responsible for immobilizing the cobalt from the liquid phase. In the unamended medium, the tolerance and stimulation in total cell counts was similar to that in amended medium or sometimes greater. Total cell counts peaked at 100 μmol Co l?1 for incubations in unamended medium (1.1–2.5 × 1011 cells l?1) and at 0.1–1 μmol Co l?1 for incubations in amended medium (1.5–2.6 × 1011 cells l?1). Counts of formazan-stained respiring cells of both the isolates in the unamended medium reached up to a maximum of 2.9–7.8 × 1010 l?1 after incubation for 10 days at 23(±1)°. In the amended medium cell counts of respiring cells attained a maximum in the range of 4.6–15.8 × 1010 l?1 at 100 μmol Co l?1. The Co immobilization rate was on average 82 (± 87.9, n = 24) μmol of Co d?1. Since the isolates were naturally occurring bacteria from crusts, they could be more environmentally acceptable and safe if used for metal recovery and bio-leaching.  相似文献   

16.
A detailed survey was undertaken of the microbial communities of 16 saline lakes in the Vestfold Hills (Princess Elizabeth Land, eastern Antarctica), which ranged in salinity from slightly brackish (4–5‰) to hypersaline (maximum: 174‰). Temperatures at comparable sampling depths in the lakes ranged from −12.2°C to +10.5°C. Ranges in the abundances of bacteria, heterotrophic nanoflagellates (HNAN) and phototrophic nanoflagellates (PNAN) were 1.40 × 107 l−1–1.58 × 1010 l−1, 4.83 × 104 l−1–1.70 × 107 l−1 and 0–1.02 × 107 l−1, respectively. There was considerable variation across the salinity spectrum, though in the case of bacteria and PNAN significantly higher concentrations of cells were seen in two of the most saline lakes. The autotrophic ciliate Mesodinium rubrum occurred in all but five of the lakes and was found at salinity levels up to 108‰. Heterotrophic ciliates were generally scarce. Dinoflagellates, particularly Gonyaulax c.f. tamarensis, Gyrodinium lachryma and Gymnodinium sp., occurred in the majority of the lakes. On the basis of chlorophyll a concentrations, nutrient levels and microplankton concentrations the lakes spanned the spectrum from ultra-oligotrophic to oligo/mesotrophic. The most saline lakes had much reduced species diversity compared with the less saline environments. Isolation from the marine environment has led to nutrient depletion, simplification and a truncated trophic structure. Received: 19 September 1996 / Accepted: 13 January 1997  相似文献   

17.
Nandini  S.  Miracle  M. R.  Vicente  E.  Sarma  S. S. S. 《Aquatic Ecology》2021,55(4):1225-1239

We compared the demographic variables and bacterivory of two strains of Diaphanosoma mongolianum from two water bodies in Spain, one without Microcystis (Maidevera in Zaragoza) and the other with dense Microcystis (La Albufera of Valencia). We hypothesized that the strain rarely exposed to Microcystis would be unable to grow on this cyanobacterial diet. We fed both strains Monoraphidium caribeum and Microcystis aeruginosa, together and separately, and compared their demographic variables. Monoraphidium caribeum was cultured in the laboratory on a defined medium, while the cyanobacteria were collected from La Albufera and sonicated before feeding the cladocerans (at 0.5?×?106 cells ml?1). We also tested the growth of D. mongolianum on bacterial diets by using seston (0–15 µm), bacterioplankton (0–3 µm) and mixed fractions (3–15 µm), from sieving Lake Albufera. We conducted population growth and life table demography experiments at 25 °C, using the two strains of D. mongolianum. Both strains had r (population growth rate) ranging from 0.05 to 0.3 d?1, on all diets. The r was higher (0.18 d?1) on the 0–15 µm seston compared to the mixed fraction (0.12 d?1) although D. mongolianum also grew well on bacterioplankton (0.16 d?1) alone. The response of the strains collected from two different water bodies was different to the test diets. We found that both strains of D. mongolianum could effectively utilize Microcystis for survival and growth, regardless of previous exposure to the cyanobacteria. The tested cladocerans could also grow well on small sized food particles (0–3 µm and 0–15 µm). Our results explain why D. mongolianum is common in eutrophic water bodies

  相似文献   

18.
This work aims to outline the dynamics of trophic links between the three main microbial components (bacteria, nanoflagellates, and ciliates) of the Farasan Archipelago in order to establish a baseline for future research in this area. The Farasan Archipelago lies along the southwestern coast of the Saudi Arabia, southern Red Sea between 16°20′–17°10′N and 41°30′–42°30′E and had been declared as marine and terrestrial reserve by the year 1996. Three different sites were chosen for this study, with each site visited bimonthly for 18 months from September 2016 to February 2018. Bacteria, nanoflagellates and ciliates were enumerated in order to explore the complex interactions between the main microbial categories in sea waters of the Farasan Archipelago. High abundances were recorded during the present study for bacteria (8.7 × 106 bacteria ml−1), nanoflagellates (3.7 × 104 TNAN ml−1) and ciliates (40.4 ciliates ml−1). The paper discusses the various potential pathways controlling the complex interactions between these microbial groups in this part of the southern Red Sea. It is concluded that a linear trophic chain consisting of bacteria; heterotrophic nanoflagellates; filter feeding ciliates is a major route by which the production of bacteria is transferred to the higher consuming levels, thereby confirming the high importance of t bottom-up control (food supply), alongside top-down control (predation) in regulating bacterial abundances in the Farasan Archipelago. During the present investigation, each nanoflagellate ingested between 11 and 87 bacteria in one hour, while each ciliate consumed between 20 and 185 nanoflagellates every hour. These calculated grazing rates of protistan eukaryotes confirmed the role of heterotrophic nanoflagellates as the main consumers of bacteria, and the role of ciliates as the major control for the heterotrophic nanoflagellate population dynamics, and thus the top predators within the microbial plankton assemblage in the Farasan Archipelago.  相似文献   

19.
Bacterial dynamics in two high-arctic lakes   总被引:1,自引:0,他引:1  
The heterotrophic planktonic bacteria in two high-arctic lakes were studied by direct microscope count and the enzymatic uptake of 14C labelled glucose which generally conformed to Michaelis-Menten kinetics. Bacterial numbers and activity in oligo-trophic Char Lake ranged from 0.1 to 2.0×10?3 bacteria/l and a maximum uptake velocity (Vmax) of 1.8 × 10?3μg glucose l? h?1. Nearby Meretta Lake received waste water from the Department of Transport Base at Resolute and this eutrophication was reflected in higher bacterial numbers of 2-80 × 108/1 and Kmax of 0.1 × 10?1-7.5 × 10?1 fig glucose l?1 h?1 The Kmax per cell in Char Lake was 3 × 10?11μg glucose l?1 h?1 and changed little between the period of solid ice cover in May and ice-free conditions in August. Bacterial cycles could not be related to phytoplankton cycles in either lake. Comparison of kinetic data from several lakes suggests a relationship between the bacterial uptake rate of glucose and phytoplankton production. Both bacterial numbers and activity in Char Lake may be very close to the minima to be expected in undisturbed freshwater environments.  相似文献   

20.
The dependence of the heterotrophic activity of bacterioplankton (V, μg C L–1 h–1) on the concentration of chlorophyll a (Chl, μg L–1) and the water temperature (T) was examined for lakes (37°29′–80°36′ N) and marine polar waters (69°16′–80°36′ N). It was shown that ~76% of the V variations was related to changes in Chl and T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号