首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1? yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1? yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.  相似文献   

2.
3.
4.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

5.
A complex study on the adaptation of cn and vn mutants and the allozymes of alcoholdehydrogenase (ADH) was carried out in initially pure lines, and their panmixia populations during exchange of the mutant genotype with that of wild-type flies (C-S) and D) through saturating crossings. The relative adaptation of the genotypes was estimated by their effect on reproductive efficiency in the experimentally obtained population. Fecundity, lifespan, and the resistance of the studied genotypes to hyperthermia were investigated individually. It was shown that the high level of adaptation of the cn mutants and the low level of adaptation of the vg mutants was correlated with the presence of different ADH allozymes. In the studied population, the F-allozyme of ADH accompanied the vg mutation, while the S-allozyme of the enzyme was detected in cn mutants. Saturating crossings of C-S(Adh Svg(Adh F) and D(Adh F) × cn(Adh S), along with the parallel determination of the allele composition of the Adh locus, demonstrated that the complete substitution of the F-allozyme of ADH in the vg mutants by the S-allozyme in D flies, as well as the substitution of the S-allozyme of ADH in the cn mutants by the F-allozyme in D flies was realized only after the 15th–20th backcrosses. These results favor the coadaptation of cn and vg marker genes with alleles of the Adh locus and indicate the important role of the latter in the adaptation of genotypes. In the studied population, selection acted primarily against the vg mutants, which were inferior to the cn mutants, and heterozygote genotypes in indices of the main adaptation components.  相似文献   

6.

Key message

The homologous genes to OsSUT1-5 in wheat were identified and detailed analysed. TaSUT1 was the predominant sucrose transporter group and it illustrated the genotypic variations towards drought during grain filling.

Abstract

Sucrose transporters (SUT) play crucial roles in wheat stem water soluble carbohydrate (WSC) remobilization to grain. To determine the major functional SUT gene groups in shoot parts of wheat during grain development, drought tolerant varieties, Westonia and Kauz, were investigated in field drought experiments. Fourteen homologous genes to OsSUT1-5 were identified on five homeologous groups, namely TaSUT1_4A, TaSUT1_4B, TaSUT1_4D; TaSUT2_5A, TaSUT2_5B, TaSUT2_5D; TaSUT3_1A, TaSUT3_1D; TaSUT4_6A, TaSUT4_6B, TaSUT4_6D; TaSUT5_2A, TaSUT5_2B, and TaSUT5_2D, and their gene structures were analysed. Wheat plants above the ground were harvested from pre-anthesis to grain maturity and the stem, leaf sheath, rachis, lemma and developing grain were used for analysing TaSUT gene expression. Grain weight, thousand grain weight, kernel number per spike, biomass and stem WSC were characterized. The study showed that among the five TaSUT groups, TaSUT1 was the predominant sucrose transporting group in all organs sampled, and the expression was particularly high in the developing grain. In contrast to TaSUT1, the gene expression levels of TaSUT2, TaSUT3 and TaSUT4 were lower, except for TaSUT3 which showed preferential expression in the lemma before anthesis. The TaSUT5 gene group was very weakly expressed in all tissues. The upregulated gene expression of TaSUT1 Westonia type in stem and grain reveal a crucial role in stem WSC remobilization to grain under drought. The high TaSUT1 gene expression and the significant correlations with thousand grain weight (TGW) and kernel number per spike demonstrated the contribution in Kauz’s high grain yield in an irrigated environment and high TGW in Westonia under drought stress. Further molecular level identification is required for gene marker development.
  相似文献   

7.
8.
IN hexaploid wheat (Triticum aestivum, 2n = 6x = 42) the constituent genomes A, B and D derive from closely related diploid species (2n = 2x = 14) within the sub-tribe Triticinae1–4. The seven different chromosomes of each genome have genetically equivalent (homoeologous) chromosomes in the other two genomes5. Homoeologous chromosomes generally compensate each other in nullisomic-tetrasomic combinations5.  相似文献   

9.

Key message

In GhCFE5 homoeologs, GhCFE5D interacted with more actin homologs and stronger interaction activity than GhCFE5A. GhCFE5D - but not GhCFE5A -overexpression severely disrupted actin cytoskeleton organization and significantly suppressed cell elongation.

Abstract

Homoeologous genes are common in polyploid plants; however, their functional divergence is poorly elucidated. Allotetraploid Upland cotton (Gossypium hirsutum, AADD) is the most widely cultivated cotton; accounting for more than 90 % of the world’s cotton production. Here, we characterized GhCFE5A and GhCFE5D homoeologs from G. hirsutum acc TM-1. GhCFE5 homoeologs are expressed preferentially in fiber cells; and a significantly greater accumulation of GhCFE5A mRNA than GhCFE5D mRNA was found in all tested tissues. Overexpression of GhCFE5D but not GhCFE5A seriously inhibits the Arabidopsis hypocotyl and root cell elongation. Yeast two-hybrid assay and bimolecular fluorescence complementation (BiFC) analysis showed that compared with GhCFE5A, GhCFE5D interacts with more actin homologs and has a stronger interaction activity both from Arabidopsis and Upland cotton. Interestingly, subcellular localization showed that GhCFE5 resides on the cortical endoplasmic reticulum (ER) network and is colocalized with actin cables. The interaction activities between GhCFE5 homoeologs and actin differ in their effects on F-actin structure in transgenic Arabidopsis root cells. The F-actin changed direction from vertical to lateral, and the actin cytoskeleton organization was severely disrupted in GhCFE5D-overexpressing root cells. These data support the functional divergence of GhCFE5 homoeologs in the actin cytoskeleton structure and cell elongation, implying an important role for GhCFE5 in the evolution and selection of cotton fiber.
  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system that affects primarily distal respiratory pathways and lung parenchyma. Smoking tobacco is a major risk factor for COPD. The relationship of HTR4 (rs3995090), HTR2A (rs6313), GRIK5 (rs8099939), GRIN2B (rs2268132), and CHRNB4 (rs1948) gene polymorphisms and COPD, as well as the contribution of these polymorphisms to the variations in quantitative characteristics that describe respiratory function, smoking behavior, and nicotine dependence was assessed in an ethnically homogeneous Tatar population. The polymorphisms of HTR2A (rs6313) (P = 0.026, OR = 1.42 for the CC genotype) and GRIN2B (rs2268132) (P = 0.0001, OR = 2.39 for the TT genotype) were significantly associated with increased risk of COPD. The AA genotype of GRIK5 (rs8099939) had a protective effect (P = 0.02, OR = 0.61). Importantly, the HTR2A (rs6313), GRIN2B (rs2268132), and GRIK5 (rs8099939) polymorphisms were only associated with COPD in smokers. Smoking index (pack-years) was significantly higher in carriers of the GRIK5 genotype AC (rs8099939) (P = 0.0027). The TT genotype of GRIN2B (rs2268132) was associated with COPD in subjects with high nicotine dependence according to the Fagerström test (P = 0.002, OR = 2.98). The TT genotype of HTR2A (rs6313) was associated with a reduced risk of the disease in the group with moderate nicotine dependence (P = 0.02, OR = 0.22). The CC genotype of HTR2A (rs6313) and the TT genotype of GRIN2B (rs2268132) were associated with higher levels of nicotine dependence according to the Fagerström test (P = 0.0011 and P = 0.037). Our results may provide insight into potential molecular mechanisms that involve the glutamate (GRIK5, GRIN2B) and serotonin (HTR2A) receptor genes in the pathogenesis of COPD.  相似文献   

11.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

12.
In rapeseed (Brassica napus L.), leaf margins are variable and can be entire, serrate, or lobed. In our previous study, the lobed-leaf gene (LOBED-LEAF 1, BnLL1) was mapped to a 32.1 kb section of B. napus A10. Two LMI1-like genes, BnaA10g26320D and BnaA10g26330D, were considered the potential genes that controlled the lobed-leaf trait in rapeseed. In the present study, these two genes and another homologous gene (BnaC04g00850D) were transformed into Arabidopsis thaliana (L.) Heynh. plants to identify their functions. All three LMI1-like genes of B. napus produced serrate leaf margins. The expression analysis indicated that the expression level of BnaA10g26320D determined the difference between lobed- and entire-leaved lines in rapeseed. Therefore, it is likely that BnaA10g26320D corresponds to BnLL1.  相似文献   

13.
The study was aimed to analyze the relation between individual genotypes and allelic variants of SNPs g.2141C>G of growth hormone gene, g.914T>A and g.257A>G of growth hormone receptor gene with growth and reproduction traits and to evaluate the populationgenetic structure in Aberdeen-Angus cattle (Bos taurus L., 1758) sample of Eastern Ukraine according SNPs studied. Allele C of SNP g.2141C>G has a positive correlation with birth weight, body stature, bigger rump, udder and total exterior evaluation score, shorter calving interval and better calve birth weight and negative correlation with calve average daily gain. Allele T of SNP g.914T>A has positive correlation with the muscle and udder size; live weight in each age, average daily gain, weight and average daily gain of calves born conform to the principle AA>TTTA. SNP g.257A>G showed a positive correlation for G allele with muscle size. The population is in equilibrium for SNPs g.2141C>G and g.257A>G, and in disequilibrium for SNP g.914T>A. The analysis showed no linkage disequilibrium between SNPs g.914T>A and g.257A>G. Inbreeding coefficient FST in Aberdeen-Angus group studied was 16.1%.  相似文献   

14.
15.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

16.
17.
Two novel DREB (dehydration-responsive element-binding protein) genes, designated as CiDREB1A and CiDREB1B, were cloned from chicory (Cichorium intybus). Both of these genes contained a conserved EREBP/AP2 domain and were classified into the A-1 subgroup of the DREB subfamily based on phylogenetic analysis. Quantitative real-time PCR analysis revealed that low temperature, but not ABA, greatly induced the expression of both CiDREB1 genes, suggesting that these genes are involved in ABA-independent stress signaling pathways. A subcellular localization assay revealed that both CiDREBs localized to the nucleus. In addition, we showed by yeast one-hybrid analysis that these two CiDREB proteins bind to the DRE motif of RD19A. These results suggest that CiDREB1A and CiDREB1B are important regulators of stress-responsive signaling in chicory.  相似文献   

18.

Key message

pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress.

Abstract

Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
  相似文献   

19.
The predator Adalia bipunctata (Coleoptera: Coccinellidae) and the entomopathogenic fungus Lecanicillium muscarium, have been considered as potential biological control against aphids. While it can be difficult to achieve a high control level of Aphis fabae Scopoli (Hemiptera: Aphididae) using only a single beneficial agent, the research presented here aimed to determine the interaction between L. muscarium and A. bipunctata potential for control against A. fabae. Lecanicillium muscarium was found to cause about 30% mortality in A. bipunctata and with a reduction in feeding by about 15%. However, co-application of A. bipunctata and L. muscarium can cause an addititive effect in reducing aphid populations, resulting in about 90% reduction in aphid populations compared with control treatment. Thus, these two biocontrol agents have the potential to be complementary. This research study demonstrates that it is possible to combine A. bipunctata with L. muscarium to provide a sustainable method for management of A. fabae on broad bean cropping system and that field studies are required.  相似文献   

20.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号