首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ribosomal S6 kinase 2 (RSK2) is a serine/threonine kinase that plays a role in human cancer and Coffin-Lowry syndrome and is comprised of two nonidentical kinase domains, each domain with its own ATP-binding site. RSK2 can be inactivated by different types of small organic molecules. Potent RSK2 inhibitors include the two classic bisindole maleimide PKC inhibitors, Ro31-8220 and GF109203X, and the natural product SL0101 that was shown to bind specifically to the ATP pocket of the N-terminal domain (NTD). In this paper, we present an atomic model of the RSK2 NTD (residues 68-323), which was built to simultaneously bind the distinctive molecular scaffolds of SL0101, Ro31-8220, and GF109203X. The RSK2 NTD model was used to identify two novel RSK2 inhibitors from the National Cancer Institute open chemical repository and to develop a preliminary structure-based pharmacophore model.  相似文献   

2.
RSK2, an ERK downstream kinase, is a novel mediator of skeletal muscle cell differentiation through its regulation of NFAT3 activity. We found that the N-terminal (amino acids (aa) 1-68) and C-terminal (aa 416-674) kinase domains of RSK2 directly interacted with nuclear localization signal 1, the Ser/Pro repeat, and the polyproline domains (aa 261-365) of NFAT3. Upon A23187 stimulation, RSK2 induced nuclear localization of NFAT3. RSK2 phosphorylated NFAT3 in vitro (Km=3.559 microM), and activation of NFAT3 by RSK2 enhanced the promoter activity of NFAT3 downstream target genes in vivo. Furthermore, nuclear accumulation of NFAT3 was attenuated markedly in RSK2-/- cells compared with wild-type RSK2+/+ cells. Notably, RSK2 and NFAT3 induced a significant differentiation of C2C12 myoblasts to multinucleated myotubes. Multinucleated myotube differentiation was inhibited by small interfering RNA against RSK2, ERK1/2, or NFAT3. These results demonstrate that RSK2 is an important kinase for NFAT3 in mediating myotube differentiation.  相似文献   

3.
BACKGROUND: The rsk1 gene encodes the 90 kDa ribosomal S6 kinase 1 (RSK1) protein, which contains two kinase domains. RSK1, which is involved in regulating cell survival and proliferation, lies at the end of the signaling cascade mediated by the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinases. ERK activation and subsequent phosphorylation of the RSK1 carboxy-terminal catalytic loop stimulates phosphotransferase activity in the RSK1 amino-terminal kinase domain. When activated, RSK1 phosphorylates both nuclear and cytoplasmic substrates through this amino-terminal catalytic domain. It is thought that stimulation of the ERK/MAP kinase pathway is sufficient for RSK1 activation, but how ERK phosphorylation activates the RSK1 amino-terminal kinase domain is not known. RESULTS: The individual isolated RSK1 kinase domains were found to be under regulatory control. In vitro kinase assays established that ERK phosphorylates RSK1 within the carboxy-terminal kinase domain, and the phosphoinositide-dependent kinase 1 (PDK1) phosphorylates RSK1 within the amino-terminal kinase domain. In transiently transfected HEK 293E cells, PDK1 alone stimulated phosphotransferase activity of an isolated RSK1 amino-terminal kinase domain. Nevertheless, activation of full-length RSK1 in the absence of serum required activation by both PDK1 and ERK. CONCLUSIONS: RSK1 is phosphorylated by PDK1 in the amino-terminal kinase-activation loop, and by ERK in the carboxy-terminal kinase-activation loop. Activation of phosphotransferase activity of full-length RSK1 in vivo requires both PDK1 and ERK. RSK1 activation is therefore regulated by both the mitogen-stimulated ERK/MAP kinase pathway and a PDK1-dependent pathway.  相似文献   

4.
We generated homozygous knockin ES cells expressing a form of 3-phosphoinositide-dependent protein kinase-1 (PDK1) with a mutation in its pleckstrin homology (PH) domain that abolishes phosphatidylinositol 3,4,5-tris-phosphate (PtdIns(3,4,5)P3) binding, without affecting catalytic activity. In the knockin cells, protein kinase B (PKB) was not activated by IGF1, whereas ribosomal S6 kinase (RSK) was activated normally, indicating that PtdIns(3,4,5)P3 binding to PDK1 is required for PKB but not RSK activation. Interestingly, amino acids and Rheb, but not IGF1, activated S6K in the knockin cells, supporting the idea that PtdIns(3,4,5)P3 stimulates S6K through PKB-mediated activation of Rheb. Employing PDK1 knockin cells in which either the PtdIns(3,4,5)P3 binding or substrate-docking 'PIF pocket' was disrupted, we established the roles that these domains play in regulating phosphorylation and stabilisation of protein kinase C isoforms. Moreover, mouse PDK1 knockin embryos in which either the PH domain or PIF pocket was disrupted died displaying differing phenotypes between E10.5 and E11.5. Although PDK1 plays roles in regulating cell size, cells derived from PH domain or PIF pocket knockin embryos were of normal size. These experiments establish the roles of the PDK1 regulatory domains and illustrate the power of knockin technology to probe the physiological function of protein-lipid and protein-protein interactions.  相似文献   

5.
FGF-2 exerts its pleiotropic effects on cell growth and differentiation by interacting with specific cell surface receptors. In addition, exogenously added FGF-2 is translocated from outside the cell to the nucleus during G1-S transition. In this study, we show that a single point mutation in FGF-2 (substitution of residue serine 117 by alanine) is sufficient to drastically reduce its mitogenic activity without affecting its differentiation properties. The FGF-2(S117A) mutant binds to and activates tyrosine kinase receptors and induces MAPK and p70S6K activation as strongly as the wild-type FGF-2. We demonstrate that this mutant enters NIH3T3 cells, is translocated to the nucleus, and is phosphorylated similar to the wild-type growth factor. This suggests that FGF-2 mitogenic activity may require, in addition to signaling through cell surface receptors and nuclear translocation, activation of nuclear targets. We have previously shown that, in vitro, FGF-2 directly stimulates the activity of the casein kinase 2 (CK2), a ubiquitous serine/threonine kinase involved in the control of cell proliferation. We report that, in vivo, FGF-2(WT) transiently interacts with CK2 and stimulates its activity in the nucleus during G1-S transition in NIH3T3 cells. In contrast, the FGF-2(S117A) mutant fails to interact with CK2. Thus, our results show that FGF-2 mitogenic and differentiation activities can be dissociated by a single point mutation and that CK2 may be a new nuclear effector involved in FGF-2 mitogenic activity.-Bailly, K., Soulet, F., Leroy, D., Amalric, F., Bouche, G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor (FGF-2).  相似文献   

6.
Fibroblast growth factor-2 (FGF-2) interacts with a dual receptor system consisting of tyrosine kinase receptors and heparan sulfate proteoglycans (HSPGs). In rat mammary fibroblasts, FGF-2 stimulated DNA synthesis and induced a sustained phosphorylation of p42/44(MAPK) and of its downstream target, p90(RSK). Moreover, FGF-2 also stimulated the transient degradation of IkappaBalpha and IkappaBbeta. PD098059, a specific inhibitor of p42/44(MAPK) phosphorylation, inhibited FGF-2-stimulated DNA synthesis, phosphorylation of p42/44(MAPK) and p90(RSK), and degradation of IkappaBbeta. In contrast, in chlorate-treated and hence sulfated glycosaminoglycan-deficient cells, FGF-2 was unable to stimulate DNA synthesis. However, FGF-2 was able to trigger a transient phosphorylation of both p42/44(MAPK) and p90(RSK), which peaked at 15 min and returned to control levels at 30 min. In these sulfated glycosaminoglycan-deficient cells, no degradation of IkappaBalpha and IkappaBbeta was observed after FGF-2 addition. However, in chlorate-treated cells, the addition of heparin or purified HSPGs simultaneously with FGF-2 restored DNA synthesis, the sustained phosphorylation of p42/44(MAPK) and p90(RSK), and the degradation of IkappaBalpha and IkappaBbeta. These results suggest that the HSPG receptor for FGF-2 not only influences the outcome of FGF-2 signaling, e.g. cell proliferation, but importantly regulates the immediate-early signals generated by this growth factor.  相似文献   

7.
The most active anticancer component in green tea is epigallocatechin-3-gallate (EGCG). Protein interaction with EGCG is a critical step for mediating the effects of EGCG on the regulation of various key molecules involved in signal transduction. By using computational docking screening methods for protein identification, we identified a serine/threonine kinase, 90-kDa ribosomal S6 kinase (RSK2), as a novel molecular target of EGCG. RSK2 includes two kinase catalytic domains in the N-terminal (NTD) and the C-terminal (CTD) and RSK2 full activation requires phosphorylation of both terminals. The computer prediction was confirmed by an in vitro kinase assay in which EGCG inhibited RSK2 activity in a dose-dependent manner. Pull-down assay results showed that EGCG could bind with RSK2 at both kinase catalytic domains in vitro and ex vivo. Furthermore, results of an ATP competition assay and a computer-docking model showed that EGCG binds with RSK2 in an ATP-dependent manner. In RSK2+/+ and RSK2-/- murine embryonic fibroblasts, EGCG decreased viability only in the presence of RSK2. EGCG also suppressed epidermal growth factor-induced neoplastic cell transformation by inhibiting phosphorylation of histone H3 at Ser10. Overall, these results indicate that RSK2 is a novel molecular target of EGCG.  相似文献   

8.
9.
The ribosomal S6 kinase 2 (RSK2) is a member of the p90 ribosomal S6 kinase (p90RSK) family of proteins and plays a critical role in proliferation, cell cycle, and cell transformation. Here, we report that RSK2 phosphorylates caspase-8, and Thr-263 was identified as a novel caspase-8 phosphorylation site. In addition, we showed that EGF induces caspase-8 ubiquitination and degradation through the proteasome pathway, and phosphorylation of Thr-263 is associated with caspase-8 stability. Finally, RSK2 blocks Fas-induced apoptosis through its phosphorylation of caspase-8. These data provide a direct link between RSK2 and caspase-8 and identify a novel molecular mechanism for caspase-8 modulation by RSK2.  相似文献   

10.
Stimulation of the Ras/extracellular signal-regulated kinase (ERK) pathway can modulate cell growth, proliferation, survival, and motility. The p90 ribosomal S6 kinases (RSKs) comprise a family of serine/threonine kinases that lie at the terminus of the ERK pathway. Efficient RSK activation by ERK requires its interaction through a docking site located near the C terminus of RSK, but the regulation of this interaction remains unknown. In this report we show that RSK1 and ERK1/2 form a complex in quiescent HEK293 cells that transiently dissociates upon mitogen stimulation. Complex dissociation requires phosphorylation of RSK1 serine 749, which is a mitogen-regulated phosphorylation site located near the ERK docking site. Using recombinant RSK1 proteins, we find that serine 749 is phosphorylated by the N-terminal kinase domain of RSK1 in vitro, suggesting that ERK1/2 dissociation is mediated through RSK1 autophosphorylation of this residue. Consistent with this hypothesis, we find that inactivating mutations in the RSK1 kinase domains disrupted the mitogen-regulated dissociation of ERK1/2 in vivo. Analysis of different RSK isoforms revealed that RSK1 and RSK2 readily dissociate from ERK1/2 following mitogen stimulation but that RSK3 remains associated with active ERK1/2. RSK activity assays revealed that RSK3 also remains active longer than RSK1 and RSK2, suggesting that prolonged ERK association increased the duration of RSK3 activation. These results provide new evidence for the regulated nature of ERK docking interactions and reveal important differences among the closely related RSK family members.  相似文献   

11.
Shao J  Irwin A  Hartson SD  Matts RL 《Biochemistry》2003,42(43):12577-12588
Hsp90 and its co-chaperone Cdc37 facilitate the folding and activation of numerous protein kinases. In this report, we examine the structure-function relationships that regulate the interaction of Cdc37 with Hsp90 and with an Hsp90-dependent kinase, the heme-regulated eIF2alpha kinase (HRI). Limited proteolysis of native and recombinant Cdc37, in conjunction with MALDI-TOF mass spectrometry analysis of peptide fragments and peptide microsequencing, indicates that Cdc37 is comprised of three discrete domains. The N-terminal domain (residues 1-126) interacts with client HRI molecules. Cdc37's middle domain (residues 128-282) interacts with Hsp90, but does not bind to HRI. The C-terminal domain of Cdc37 (residues 283-378) does not bind Hsp90 or kinase, and no functions were ascribable to this domain. Functional assays did, however, suggest that residues S127-G163 of Cdc37 serve as an interdomain switch that modulates the ability of Cdc37 to sense Hsp90's conformation and thereby mediate Hsp90's regulation of Cdc37's kinase-binding activity. Additionally, scanning alanine mutagenesis identified four amino acid residues at the N-terminus of Cdc37 that are critical for high-affinity binding of Cdc37 to client HRI molecules. One mutation, Cdc37/W7A, also implicated this region as an interpreter of Hsp90's conformation. Results illuminate the specific Cdc37 motifs underlying the allosteric interactions that regulate binding of Hsp90-Cdc37 to immature kinase molecules.  相似文献   

12.
A detailed structure/function analysis of Drosophila p90 ribosomal S6 kinase (S6KII) or its mammalian homolog RSK has not been performed in the context of neuronal plasticity or behavior. We previously reported that S6KII is required for normal circadian periodicity. Here we report a site-directed mutagenesis of S6KII and analysis of mutants, in vivo, that identifies functional domains and phosphorylation sites critical for the regulation of circadian period. We demonstrate, for the first time, a role for the S6KII C-terminal kinase that is independent of its known role in activation of the N-terminal kinase. Both S6KII C-terminal kinase activity and its ERK-binding domain are required for wild-type circadian period and normal phosphorylation status of the protein. In contrast, the N-terminal kinase of S6KII is dispensable for modulation of circadian period and normal phosphorylation of the protein. We also show that particular sites of S6KII phosphorylation, Ser-515 and Thr-732, are essential for normal circadian behavior. Surprisingly, the phosphorylation of S6KII residues, in vivo, does not follow a strict sequential pattern, as implied by certain cell-based studies of mammalian RSK protein.  相似文献   

13.
Basic fibroblast growth factor (FGF-2) is a member of a large family of structurally related proteins that affect the growth, differentiation, migration, and survival of many cell types. The human FGF-2 gene (encoding residues 1–155) was synthesized by PCR from 20 oligonucleotides and cloned into plasmid pET-32a. A high expression level (1 g/liter) of a fused protein thioredoxin/FGF-2 was achieved in Escherichia coli strain BL21(DE3). The fusion protein was purified from the soluble fraction of cytoplasmic proteins on a Ni-NTA agarose column. After cleavage of the thioredoxin/FGF-2 fusion with recombinant human enteropeptidase light chain, the target protein FGF-2 was purified on a heparin-Sepharose column. The yield of FGF-2 without N- and C-terminal tags and with high activity was 100 mg per liter of cell culture. Mutations C78S and C96S in the amino acid sequence of the protein decreased FGF-2 dimer formation without affecting its solubility and biological activity.  相似文献   

14.
90-kDa ribosomal S6 kinase-2 (RSK2) belongs to a family of growth factor-activated serine/threonine kinases composed of two kinase domains connected by a regulatory linker region. The N-terminal kinase of RSK2 is involved in substrate phosphorylation. Its activation requires phosphorylation of the linker region at Ser(369), catalyzed by extracellular signal-regulated kinase (ERK), and at Ser(386), catalyzed by the C-terminal kinase, after its activation by ERK. In addition, the N-terminal kinase must be phosphorylated at Ser(227) in the activation loop by an as yet unidentified kinase. Here, we show that the isolated N-terminal kinase of RSK2 (amino acids 1-360) is phosphorylated at Ser(227) by PDK1, a constitutively active kinase, leading to 100-fold stimulation of kinase activity. In COS7 cells, ectopic PDK1 induced the phosphorylation of full-length RSK2 at Ser(227) and Ser(386), without involvement of ERK, leading to partial activation of RSK2. Similarly, two other members of the RSK family, RSK1 and RSK3, were partially activated by PDK1 in COS7 cells. Finally, our data indicate that full activation of RSK2 by growth factor requires the cooperation of ERK and PDK1 through phosphorylation of Ser(227), Ser(369), and Ser(386). Our study extend recent findings which implicate PDK1 in the activation of protein kinases B and C and p70(S6K), suggesting that PDK1 controls several major growth factor-activated signal transduction pathways.  相似文献   

15.
RSK is a serine/threonine kinase containing two distinct catalytic domains. Found at the terminus of the Ras/extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) kinase cascade, mitogen-stimulated ribosomal S6 kinase (RSK) activity requires multiple inputs. These inputs include phosphorylation of the C-terminal kinase domain activation loop by ERK1/2 and phosphorylation of the N-terminal kinase domain activation loop by phosphoinositide-dependent protein kinase-1 (PDK1). Previous work has shown that upon mitogen stimulation, RSK accumulates in the nucleus. Here we show that prior to nuclear translocation, epidermal growth factor-stimulated RSK1 transiently associates with the plasma membrane. Myristylation of wild-type RSK1 results in an activated enzyme in the absence of added growth factors. When RSK is truncated at the C terminus, the characterized ERK docking is removed and RSK phosphotransferase activity is completely abolished. When myristylated, however, this myristylated C-terminal truncated form (myrCTT) is activated at a level equivalent to myristylated wild-type (myrWT) RSK. Both myrWT RSK and myrCTT RSK can signal to the RSK substrate c-Fos in the absence of mitogen activation. Unlike myrWT RSK, myrCTT RSK is not further activated by serum. Only the myristylated RSK proteins are basally phosphorylated on avian RSK1 serine 381, a site critical for RSK activity. The myristylated and unmyristylated RSK constructs interact with PDK1 upon mitogen stimulation, and this interaction is insensitive to the MEK inhibitor UO126. Because a kinase-inactive CTT RSK can be constitutively activated by targeting to the membrane, we propose that ERK may have a dual role in early RSK activation events: preliminary phosphorylation of RSK and escorting RSK to a membrane-associated complex, where additional MEK/ERK-independent activating inputs are encountered.  相似文献   

16.
Members of high (22-, 22.5-, 24-, and 34-kDa) and low (18-kDa) molecular mass forms of fibroblast growth factor-2 (FGF-2) regulate cell proliferation, differentiation, and migration. FGF-2s have been previously shown to accumulate in the nucleus and nucleolus. Although high molecular weight forms of FGF-2 contain at least one nuclear localization signal (NLS) in their N-terminal extension, the 18-kDa FGF-2 does not contain a standard NLS. To determine signals controlling the nuclear and subnuclear localization of the 18-kDa FGF-2, its full-length cDNA was fused to that of green fluorescent protein (GFP). The fusion protein was primarily localized to the nucleus of COS-7 and HeLa cells and accumulated in the nucleolus. The subcellular distribution was confirmed using wild type FGF-2 and FGF-2 tagged with a FLAG epitope. A 17-amino acid sequence containing two groups of basic amino acid residues separated by eight amino acid residues directed GFP and a GFP dimer into the nucleus. We systematically mutated the basic amino acid residues in this nonclassical NLS and determined the effect on nuclear and nucleolar accumulation of 18-kDa FGF-2. Lys(119) and Arg(129) are the key amino acid residues in both nuclear and nucleolar localization, whereas Lys(128) regulates only nucleolar localization of 18-kDa FGF-2. Together, these results demonstrate that the 18-kDa FGF-2 harbors a C-terminal nonclassical bipartite NLS, a portion of which also regulates its nucleolar localization.  相似文献   

17.
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.  相似文献   

18.
NDR (nuclear Dbf2-related) kinase belongs to a family of kinases that is highly conserved throughout the eukaryotic world. We showed previously that NDR is regulated by phosphorylation and by the Ca(2+)-binding protein, S100B. The budding yeast relatives of Homo sapiens NDR, Cbk1, and Dbf2, were shown to interact with Mob2 (Mps one binder 2) and Mob1, respectively. This interaction is required for the activity and biological function of these kinases. In this study, we show that hMOB1, the closest relative of yeast Mob1 and Mob2, stimulates NDR kinase activity and interacts with NDR both in vivo and in vitro. The point mutations of highly conserved residues within the N-terminal domain of NDR reduced NDR kinase activity as well as human MOB1 binding. A novel feature of NDR kinases is an insert within the catalytic domain between subdomains VII and VIII. The amino acid sequence within this insert shows a high basic amino acid content in all of the kinases of the NDR family known to interact with MOB proteins. We show that this sequence is autoinhibitory, and our data indicate that the binding of human MOB1 to the N-terminal domain of NDR induces the release of this autoinhibition.  相似文献   

19.
Bazooka (Par-3) is a conserved polarity regulator that organizes molecular networks in a wide range of cell types. In epithelia, it functions as a plasma membrane landmark to organize the apical domain. Bazooka is a scaffold protein that interacts with proteins through its three PDZ (postsynaptic density 95, discs large, zonula occludens-1) domains and other regions. In addition, Bazooka has been shown to interact with phosphoinositides. Here we show that the Bazooka PDZ domains interact with the negatively charged phospholipid phosphatidic acid immobilized on solid substrates or in liposomes. The interaction requires multiple PDZ domains, and conserved patches of positively charged amino acid residues appear to mediate the interaction. Increasing or decreasing levels of diacylglycerol kinase or phospholipase D-enzymes that produce phosphatidic acid-reveal a role for phosphatidic acid in Bazooka embryonic epithelial activity but not its localization. Mutating residues implicated in phosphatidic acid binding revealed a possible role in Bazooka localization and function. These data implicate a closer connection between Bazooka and membrane lipids than previously recognized. Bazooka polarity landmarks may be conglomerates of proteins and plasma membrane lipids that modify each other's activities for an integrated effect on cell polarity.  相似文献   

20.
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNAS100B knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca2+-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号