首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Lipoamide and a peptide, Thr-Val-Glu-Gly-Asp-Lys-Ala-Ser-Met-Glu lipoylated on the N6-amino group of the lysine residue, were tested as substrates for reductive acetylation by the pyruvate decarboxylase (E1p) component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The peptide has the same amino acid sequence as that surrounding the three lipoyllysine residues in the lipoate acetyltransferase (E2p) component of the native enzyme complex. Lipoamide was shown to be a very poor substrate, with a Km much higher than 4 mM and a value of kcat/Km of 1.5 M-1.s-1. Under similar conditions, the three E2p lipoyl domains, excised from the pyruvate dehydrogenase complex by treatment with Staphylococcus aureus V8 proteinase, could be reductively acetylated by E1p much more readily, with a typical Km of approximately 26 microM and a typical kcat of approximately 0.8 s-1. The value of kcat/Km for the lipoyl domains, approximately 3.0 x 10(4) M-1.s-1, is about 20,000 times higher than that for lipoamide as a substrate. This indicates the great improvement in the effectiveness of lipoic acid as a substrate for E1p that accompanies the attachment of the lipoyl group to a protein domain. The free E2o lipoyl domain was similarly found to be capable of being reductively succinylated by the 2-oxoglutarate decarboxylase (E1o) component of the 2-oxoglutarate dehydrogenase complex of E. coli. The 2-oxo acid dehydrogenase complexes are specific for their particular 2-oxo acid substrates. The specificity of the E1 components was found to extend also to the lipoyl domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The meta operon of the Pseudomonas putida TOL plasmid (pWWO) encodes all enzymes of a meta-cleavage pathway for the metabolism of benzoic acids to Krebs-cycle intermediates. We have determined and analysed the nucleic acid sequence of a 3442 bp region of the meta operon containing the xyl-GFJ genes whose products are involved in the post meta-ring fission transformation of catechols. Homology analysis of the xylGFJ gene products revealed evidence of biochemical relatedness, suggested enzymatic mechanisms, and permitted us to propose evolutionary events which may have generated the current variety of aromatic degradative pathways. The xylG gene, which specifies 2-hydroxymuconic semialdehyde dehydrogenase (HMSD), was found to encode a protein of 51.7 kDa. The predicted protein sequence exhibits significant homology to eukaryotic aldehyde dehydrogenases (ADHs) and to the products of two other Pseudomonas catabolic genes, i.e. xylC and alkH. Expansion of the ADH superfamily to include these prokaryotic enzymes permitted a broader analysis of functionally critical ADH residues and phylogenetic relationships among superfamily members. The importance of three regions of these enzymes previously thought to be critical to ADH activity was reinforced by this analysis. However glutamine-487, also thought to be critical, is less well conserved. The revised ADH phylogeny proposed here suggests early catabolic ADH divergence with subsequent interkingdom gene exchange. The xylF gene, which specifies 2-hydroxymuconic semialdehyde hydrolase (HMSH), was delineated by N-terminal sequence analysis of the purified gene product and is shown to encode a protein of 30.6 kDa. Homology analysis revealed sequence similarity to a chromosomally encoded serine hydrolase, especially in the region of the previously identified active-site serine residue, suggesting that HMSH may also possess a serine hydrolytic enzymatic mechanism. Likewise, the xylJ gene, which specifies 2-hydroxy-pent-2,4-dienoate hydratase (HPH), was delineated by N-terminal sequence analysis of purified HPH, and was found to encode a 23.9 kDa protein. Sequence comparisons revealed that both HMSH and HPH have analogues in the tod gene cluster, which specifies a toluene/benzene degradative pathway. Although the newly identified todF and todJ genes had been at least partially sequenced (Zylstra and Gibson, 1989), the open reading frames had not been positively identified. The presence of todJ provides strong evidence that the reactions following ring fission in the tod pathway are identical to those of the TOL pathway.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The xylDEGF operon and the regulatory gene xylS of the TOL plasmid found in Pseudomonas putida mt-2 were cloned onto Escherichia coli vector plasmids. A 9.5-kilobase fragment, derived from the TOL segment of pTN2 deoxyribonucleic acid, carried the xyl genes D, E, G, and F, which encode toluate oxygenase, catechol 2,3-oxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, and 2-hydroxymuconic semialdehyde hydrolase, respectively. The enzymes were noninducible unless a 3-kilobase PstI fragment, derived also from the TOL segment, was provided in either cis or trans. The PstI fragment appeared to contain the regulatory gene xylS, which produced a positive regulator. The regulator was activated by m-toluate or benzoate, but not by m-xylene or m-methylbenzyl alcohol. the map positions of xylG and xylF were also determined.  相似文献   

4.
Analysis of the ACP1 gene product: classification as an FMN phosphatase.   总被引:1,自引:0,他引:1  
The relationship between the ACP1 gene product, an 18kDa acid phosphatase (E.C. 3.1.3.2) postulated to function as a protein tyrosyl phosphatase, and the cellular flavin mononucleotide (FMN) phosphatase has been examined in vitro and by using cultured Chinese hamster ovary (CHO) cells. Kinetic analysis indicated that at pH 6 the acid phosphatase utilized a variety of phosphate monoesters as substrates. While small molecules such as FMN were effectively utilized as substrates (kcat/Km = 7.3 x 10(3) s-1M-1), the tyrosyl phosphorylated form of the adipocyte lipid binding protein was a relatively poor substrate (kcat/Km = 1.7 x 10(-1) s-1M-1) suggesting a role for the phosphatase in flavin metabolism. Fractionation of CHO cell extracts revealed that 90% of the FMN phosphatase activity was soluble and that all of the soluble activity eluted from a Sephadex G-75 column with the acid phosphatase. All of the soluble FMN phosphatase activity was inhibited by immunospecific antibodies directed against the bovine heart ACP1 gene product. These results suggest that the ACP1 gene product functions cellularly not as a protein tyrosyl phosphatase but as a soluble FMN phosphatase.  相似文献   

5.
The relationship between the NADH:lipoamide reductase and NADH:quinone reductase reactions of pig heart lipoamide dehydrogenase (EC 1.6.4.3) was investigated. At pH 7.0 the catalytic constant of the quinone reductase reaction (kcat.) is 70 s-1 and the rate constant of the active-centre reduction by NADH (kcat./Km) is 9.2 x 10(5) M-1.s-1. These constants are almost an order lower than those for the lipoamide reductase reaction. The maximal quinone reductase activity is observed at pH 6.0-5.5. The use of [4(S)-2H]NADH as substrate decreases kcat./Km for the lipoamide reductase reaction and both kcat. and kcat./Km for the quinone reductase reaction. The kcat./Km values for quinones in this case are decreased 1.85-3.0-fold. NAD+ is a more effective inhibitor in the quinone reductase reaction than in the lipoamide reductase reaction. The pattern of inhibition reflects the shift of the reaction equilibrium. Various forms of the four-electron-reduced enzyme are believed to reduce quinones. Simple and 'hybrid ping-pong' mechanisms of this reaction are discussed. The logarithms of kcat./Km for quinones are hyperbolically dependent on their single-electron reduction potentials (E1(7]. A three-step mechanism for a mixed one-electron and two-electron reduction of quinones by lipoamide dehydrogenase is proposed.  相似文献   

6.
2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.  相似文献   

7.
The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes which transform toluene and xylenes to benzoate and toluates. The genetic organization of the operon was characterized by cloning of the upper operon genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the upper operon contains at least five genes in the order of xylC-xylM-xylA-xylB-xylN. Between the promoter of the operon and xylC, there is a 1.7-kilobase-long space of DNA in which no gene function was identified. In contrast, most of the DNA between xylC and xylN consists of coding sequences. The xylC gene encodes the 57-kilodalton benzaldehyde dehydrogenase. The xylM and xylA genes encode 35- and 40-kilodalton polypeptides, respectively, which were shown by genetic complementation tests to be subunits of xylene oxygenase. The structural gene for benzyl alcohol dehydrogenase, xylB, encodes a 40-kilodalton polypeptide. The last gene of this operon is xylN, which synthesizes a 52-kilodalton polypeptide of unknown function.  相似文献   

8.
Bovine erythrocyte glutathione (GSH) peroxidase (GPX, EC 1.11.1.9) was examined for GSH-dependent dehydroascorbate (DHA) reductase (EC 1.8.5.1) and thioltransferase (EC 1.8.4.1) activities. Using the direct assay method for GSH-dependent DHA reductase activity, GPX had a kcat (app) of 140 +/- 9 min-1 and specificity constants (kcat/Km(app)) of 5.74 +/- 0.78 x 10(2) M-1s-1 for DHA and 1.18 +/- 0.17 x 10(3) M-1s-1 for GSH based on the monomer Mr of 22,612. Using the coupled assay method for thioltransferase activity, GPX had a kcat (app) of 186 +/- 9 min-1 and specificity constants (app) of 1. 49 +/- 0.14 x 10(3) M-1s-1 for S-sulfocysteine and 1.51 +/- 0.18 x 10(3) M-1s-1 for GSH based on the GPX monomer molecular weight. GPX has a higher specificity constant for S-sulfocysteine than DHA, and both assay systems gave nearly identical specificity constants for GSH. The DHA reductase and thioltransferase activities of GPX adds to the repertoire of functions of this enzyme as an important protector against cellular oxidative stress.  相似文献   

9.
The activation kinetics of single chain urinary-type plasminogen activator (scu-PA) by plasmin have been studied in detail. Nonstandard Michaelis-Menten kinetics were observed. To explain our results, we propose a model in which plasmin can exist in two conformations of lower activity (kcat/Km = 1.4 x 10(6) M-1 s-1) or higher activity (kcat/Km = 16.7 x 10(6) M-1 s-1) depending on whether a lysine binding site is occupied or free, respectively. These kinetic studies demonstrate that scu-PA interacts at this binding site (KD approximately 30 nM) and so is able to act as both a substrate and effector in this reaction. Binding was also demonstrated between scu-PA and Glu- or Lys-plasminogen at a high affinity site (KD approximately 65 nM), sensitive to the presence of lysine analogs. This suggests that scu-PA may be almost completely bound to plasminogen in plasma under normal physiological conditions and provides a possible explanation for the fibrin specificity of this activator, as discussed.  相似文献   

10.
R R Joshi  K N Ganesh 《FEBS letters》1992,313(3):303-306
Hydrolysis of endothelin 1 by rat kidney membranes was investigated using a reverse-phase HPLC and an automated gas-phase protein sequencer. Endothelin 1 was hydrolyzed into four major fragments which were detected by HPLC. Phosphoramidon, an inhibitor of neutral endopeptidase 24,11, almost completely suppressed the production of three fragments, but one fragment was not affected by the inhibitor. Analysis of N-terminal sequences of the degradation products revealed that the phosphoramidon-sensitive fragments were generated by cleavage at the Ser5-Leu6 bond of endothelin 1 that was identical with its cleavage site by purified rat endopeptidase 24,11, reported previously. The phosphoramidon-insensitive fragment was produced by cleavage at Leu17-Asp18, which was distinct from the sites by endopeptidase 24,11, but corresponded to that by a phosphoramidon-insensitive metallo-endopeptidase recently isolated from rat kidney membranes by us [(1992) Eur. J. Biochem. 204, 547-552]. Kinetic determination of endothelin 1 hydrolysis by the isolated enzyme yielded values of Km = 71.5 microM and kcat = 1.49 s-1, giving a ratio of kcat/Km = 2.08 x 10(4) s-1.M-1. The Km value was much higher and the kcat/Km value was much lower than those for rat endopeptidase 24,11 reported previously. Thus, endopeptidase 24,11 appears to hydrolyze endothelin 1 more efficiently than the isolated enzyme does. Both enzymes may play physiological roles in the metabolism of endothelin 1 by rat kidney membranes in vivo.  相似文献   

11.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

12.
A protein identified as "N-acylamino acid racemase" from Amycolaptosis sp. is an inefficient enzyme (kcat/Km = 3.7 x 10(2) M-1 s-1). Its sequence is 43% identical to that of an unidentified protein encoded by the Bacillus subtilis genome. Both proteins efficiently catalyze the o-succinylbenzoate synthase reaction in menaquinone biosynthesis (kcat/Km = 2.5 x 10(5) and 7.5 x 10(5) M-1 s-1, respectively), suggesting that this is their "correct" metabolic function. Their membership in the mechanistically diverse enolase superfamily provides an explanation for the catalytic promiscuity of the protein from Amycolaptosis. The adventitious promiscuity may provide an example of a protein poised for evolution of a new enzymatic function in the enolase superfamily. This study demonstrates that the correct assignment of function to new proteins in functional and structural genomics may require an understanding of the metabolism of the organism.  相似文献   

13.
Acryloyl-CoA reductase from Clostridium propionicum catalyses the irreversible NADH-dependent formation of propionyl-CoA from acryloyl-CoA. Purification yielded a heterohexadecameric yellow-greenish enzyme complex [(alpha2betagamma)4; molecular mass 600 +/- 50 kDa] composed of a propionyl-CoA dehydrogenase (alpha2, 2 x 40 kDa) and an electron-transferring flavoprotein (ETF; beta, 38 kDa; gamma, 29 kDa). A flavin content (90% FAD and 10% FMN) of 2.4 mol per alpha2betagamma subcomplex (149 kDa) was determined. A substrate alternative to acryloyl-CoA (Km = 2 +/- 1 microm; kcat = 4.5 s-1 at 100 microm NADH) is 3-buten-2-one (methyl vinyl ketone; Km = 1800 microm; kcat = 29 s-1 at 300 microm NADH). The enzyme complex exhibits acyl-CoA dehydrogenase activity with propionyl-CoA (Km = 50 microm; kcat = 2.0 s-1) or butyryl-CoA (Km = 100 microm; kcat = 3.5 s-1) as electron donor and 200 microm ferricenium hexafluorophosphate as acceptor. The enzyme also catalysed the oxidation of NADH by iodonitrosotetrazolium chloride (diaphorase activity) or by air, which led to the formation of H2O2 (NADH oxidase activity). The N-terminus of the dimeric propionyl-CoA dehydrogenase subunit is similar to those of butyryl-CoA dehydrogenases from several clostridia and related anaerobes (up to 55% sequence identity). The N-termini of the beta and gamma subunits share 40% and 35% sequence identities with those of the A and B subunits of the ETF from Megasphaera elsdenii, respectively, and up to 60% with those of putative ETFs from other anaerobes. Acryloyl-CoA reductase from C. propionicum has been characterized as a soluble enzyme, with kinetic properties perfectly adapted to the requirements of the organism. The enzyme appears not to be involved in anaerobic respiration with NADH or reduced ferredoxin as electron donors. There is no relationship to the trans-2-enoyl-CoA reductases from various organisms or the recently described acryloyl-CoA reductase activity of propionyl-CoA synthase from Chloroflexus aurantiacus.  相似文献   

14.
The time course of the interaction between trypsin and a synthetic peptide corresponding to a segment (residues 676-703) of the bait region (residues 666-706) of human alpha 2-macroglobulin (alpha 2M) was studied by measuring the generation of cleavage products as a function of time by HPLC. Three primary cleavage sites for trypsin were present in the synthetic peptide. The fastest cleavage occurred at the bond corresponding to Arg696-Leu in alpha 2M with an estimated kcat/Km = 1-2 x 10(6) M-1.s-1. This value is of the same magnitude as that characterizing the interaction of alpha 2M and trypsin when taking into account the fact that alpha 2M is a tetramer, kcat/Km = 5 x 10(6) M-1.s-1 [Christensen, U. & Sottrup-Jensen, L. (1984) Biochemistry 23, 6619-6626]. The values of kcat/Km for cleavage at bonds corresponding to Arg681-Val and Arg692-Gly in alpha 2M were 1.5 x 10(5) M-1.s-1 and 1.3 x 10(5) M-1.s-1, respectively. Cleavage of intermediate product peptides was slower, with kcat/Km in the range 13-1.3 x 10(6) M-1.s-1. The value of Km determined for fast cleavage in the synthetic peptide was 8-10 microM. 1H-NMR spectroscopy indicated no ordered structure of the peptide. Hence, the very fast cleavage of the peptide is compatible with a loose structure that readily adopts a conformation favorable for recognition and cleavage by trypsin.  相似文献   

15.
The nucleotide sequence of a 2493 base pair (bp) region, spanning the coding regions for the meta-cleavage pathway enzymes 2-hydroxymuconic semialdehyde dehydrogenase (HMSD) and 2-hydroxymuconic semialdehyde hydrolase (HMSH), was determined. The deduced protein sequence for HMSD is 486 amino acid residues long with an Mr of 51,682. HMSD has homology with a number of aldehyde dehydrogenases from various eukaryotic sources. The deduced protein sequence for HMSH is 283 amino acids long with an Mr of 30,965. The amino acid composition of this enzyme is similar to that of isofunctional enzymes from toluene and m-cresol catabolic pathways.  相似文献   

16.
Human Hageman factor, a plasma proteinase zymogen, was activated in vitro under a near physiological condition (pH 7.8, ionic strength I = 0.14, 37 degrees C) by Pseudomonas aeruginosa elastase, which is a zinc-dependent tissue destructive neutral proteinase. This activation was completely inhibited by a specific inhibitor of the elastase, HONHCOCH(CH2C6H5)CO-Ala-Gly-NH2, at a concentration as low as 10 microM. In this activation Hagemen factor was cleaved, in a limited fashion, liberating two fragments with apparent molecular masses of 40 and 30 kDa, respectively. The appearance of the latter seemed to correspond chronologically to the generation of activated Hageman factor. Kinetic parameters of the enzymatic activation were kcat = 5.8 x 10(-3) s-1, Km = 4.3 x 10(-7) M and kcat/Km = 1.4 x 10(4) M-1 x s-1. This Km value is close to the plasma concentration of Hageman factor. Another zinc-dependent proteinase, P. aeruginosa alkaline proteinase, showed a negligible Hageman factor activation. In the presence of a negatively charged soluble substance, dextran sulfate (0.3-3 micrograms/ml), the activation rate by the elastase increased several fold, with the kinetic parameters of kcat = 13.9 x 10(-3) s-1, Km = 1.6 x 10(-7) M and kcat/Km = 8.5 x 10(4) M-1 x s-1. These results suggested a participation of the Hageman factor-dependent system in the inflammatory response to pseudomonal infections, due to the initiation of the system by the bacterial elastase.  相似文献   

17.
Matrix metalloproteinase-3 (MMP-3 or stromelysin-1) specifically binds to tissue-type plasminogen activator (t-PA), without however, hydrolyzing the protein. Binding affinity to proMMP-3 is similar to single chain t-PA, two chain t-PA and active site mutagenized t-PA (Ka of 6.3 x 106 to 8.0 x 106 M-1), but is reduced for t-PA lacking the finger and growth factor domains (Ka of 2.0 x 106 M-1). Activation of native Glu-plasminogen by t-PA in the presence of proMMP-3 obeys Michaelis-Menten kinetics; at saturating concentrations of proMMP-3, the catalytic efficiency of two chain t-PA is enhanced 20-fold (kcat/Km of 7.9 x 10-3 vs. 4.1 x 10-4 microM-1.s-1). This is mainly the result of an enhanced affinity of t-PA for its substrate (Km of 1.6 microM vs. 89 microM in the absence of proMMP-3), whereas the kcat is less affected (kcat of 1.3 x 10-2 vs. 3.6 x 10-2 s-1). Activation of Lys-plasminogen by two chain t-PA is stimulated about 13-fold at a saturating concentration of proMMP-3, whereas that of miniplasminogen is virtually unaffected (1.4-fold). Plasminogen activation by single chain t-PA is stimulated about ninefold by proMMP-3, whereas that by the mutant lacking finger and growth factor domains is stimulated only threefold. Biospecific interaction analysis revealed binding of Lys-plasminogen to proMMP-3 with 18-fold higher affinity (Ka of 22 x 106 M-1) and of miniplasminogen with fivefold lower affinity (Ka of 0.26 x 106 M-1) as compared to Glu-plasminogen (Ka of 1.2 x 106 M-1). Plasminogen and t-PA appear to bind to different sites on proMMP-3. These data are compatible with a model in which both plasminogen and t-PA bind to proMMP-3, resulting in a cyclic ternary complex in which t-PA has an enhanced affinity for plasminogen, which may be in a Lys-plasminogen-like conformation. Maximal binding and stimulation require the N-terminal finger and growth factor domains of t-PA and the N-terminal kringle domains of plasminogen.  相似文献   

18.
Various amino acid and peptide thioesters were tested as substrates for human proteinase 3 and the best substrate is Boc-Ala-Ala-Nva-SBzl with a kcat/Km value of 1.0 x 10(6) M-1.s-1. Boc-Ala-Ala-AA-SBzl (AA = Val, Ala, or Met) are also good substrates with kcat/Km values of (1-4) x 10(5) M-1.s-1. Substituted isocoumarins are potent inhibitors of proteinase 3 and the best inhibitors are 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarin and 3,4-dichloroisocoumarin (DCI) with kobs/[I] values of 4700 and 2600 M-1.s-1, respectively. Substituted isocoumarins, peptide phosphonates and chloromethyl ketones inhibited proteinase 3 less potently than human neutrophil elastase (HNE) by 1-2 orders of magnitude.  相似文献   

19.
The interaction between six class C beta-lactamases and various penicillins has been studied. All the enzymes behaved in a very uniform manner. Benzylpenicillin exhibited relatively low kcat. values (14-75 s-1) but low values of Km resulted in high catalytic efficiencies [kcat./Km = 10 X 10(6)-75 X 10(6) M-1.s-1]. The kcat. values for ampicillin were 10-100-fold lower. Carbenicillin, oxacillin cloxacillin and methicillin were very poor substrates, exhibiting kcat. values between 1 x 10(-3) and 0.1 s-1. The Km values were correspondingly small. It could safely be hypothesized that, with all the tested substrates, deacylation was rate-limiting, resulting in acyl-enzyme accumulation.  相似文献   

20.
Two 3-hydroxybenzoate-inducible gentisate 1,2-dioxygenases were purified to homogeneity from Pseudomonas alcaligenes NCIB 9867 (P25X) and Pseudomonas putida NCIB 9869 (P35X), respectively. The estimated molecular mass of the purified P25X gentisate 1, 2-dioxygenase was 154 kDa, with a subunit mass of 39 kDa. Its structure is deduced to be a tetramer. The pI of this enzyme was established to be 4.8 to 5.0. The subunit mass of P35X gentisate 1, 2-dioxygenase was 41 kDa, and this enzyme was deduced to exist as a dimer, with a native molecular mass of about 82 kDa. The pI of P35X gentisate 1,2-dioxygenase was around 4.6 to 4.8. Both of the gentisate 1,2-dioxygenases exhibited typical saturation kinetics and had apparent Kms of 92 and 143 microM for gentisate, respectively. Broad substrate specificities were exhibited towards alkyl and halogenated gentisate analogs. Both enzymes had similar kinetic turnover characteristics for gentisate, with kcat/Km values of 44.08 x 10(4) s-1 M-1 for the P25X enzyme and 39.34 x 10(4) s-1 M-1 for the P35X enzyme. Higher kcat/Km values were expressed by both enzymes against the substituted gentisates. Significant differences were observed between the N-terminal sequences of the first 23 amino acid residues of the P25X and P35X gentisate 1,2-dioxygenases. The P25X gentisate 1,2-dioxygenase was stable between pH 5.0 and 7.5, with the optimal pH around 8.0. The P35X enzyme showed a pH stability range between 7.0 and 9.0, and the optimum pH was also 8.0. The optimal temperature for both P25X and P35X gentisate 1, 2-dioxygenases was around 50 degrees C, but the P35X enzyme was more heat stable than that from P25X. Both enzymes were strongly stimulated by 0.1 mM Fe2+ but were completely inhibited by the presence of 5 mM Cu2+. Partial inhibition of both enzymes was also observed with 5 mM Mn2+, Zn2+, and EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号