首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The aims of our investigation were to develop and optimize ciclopirox (CPX) nail lacquer using nonbiodegradable Eudragit RLPO (E-RLPO) as a film former and to assess its penetration efficiency across the human nail plate. Preliminary trials such as hydration enhancement factor (HEF), a retained drug in the nail plate, and SEM were studied to select the optimized permeation enhancer to be incorporated in the optimized lacquer formulation. A 33 full factorial design was built up to study the effect of three different factors, concentration of E-RLPO (10, 20, and 30%), Tween 80 (0.25, 0.5, and 1%), and triacetin (0, 10, and 30% of polymer weight). The studied responses were the drying time, water resistance, viscosity, and drug release up to 4 h. An ex vivo permeation study for the optimized formulations was carried out. The preliminary study aided the selection of 5% papain (endopeptidase enzyme) as a penetration enhancer; it showed the highest HEF of 15.27%, the highest amount of drug retained in the nail plate (886.2 μg/g). An ex vivo permeation study guided the selection of F4B (flux value of 3.79 μg/cm2/h) as optimized formulation. The optimized lacquer formula showed threefold increases in the permeation than the marketed CPX lacquer (Batrafen®). Confocal laser scanning microscopy revealed the higher intensity of the Rhodamine B dye across the nail plate in the case of the formula containing papain than the marketed formula without papain. Conclusively, an efficient and stable nail lacquer was developed for potential transungual delivery of CPX to target the drug to the nail bed and ensure efficiency against onychomycosis.  相似文献   

2.
Honokiol is a natural phenolic anti-cancer compound isolated from an extract of seed cones from Magnolia grandiflora. This study investigated the transdermal delivery of honokiol using various enhancement methods and to explore the potential of honokiol to treat breast cancer directly via delivery through mammary papilla. Poration of dermatomed human skin with microneedles significantly increased the delivery of honokiol by nearly 3-fold (97.81?±?18.96 μg/cm2) compared with passive delivery (32.56?±?5.67 μg/cm2). Oleic acid was found to be the best chemical penetration enhancer, increasing the delivery almost 27-fold (868.06?±?100.91 μg/cm2). Addition of oleic acid also resulted in better retention of drug in the porcine mammary papilla (965.41?±?80.26 μg/cm2) compared with breast skin (294.16?±?8.49 μg/cm2). Anti-cancer effect of honokiol was demonstrated with the decrease in the release of cytokine IL-6 and further suppression of Ki-67 proliferative protein. In addition, the topical honokiol formulation investigated was found to be safe and non-irritant. In summary, both microneedles and chemical enhancers can improve the absorption of honokiol through skin. Directly applying honokiol on mammary papilla is a potential administration route which can increase localized delivery into breast tissue.  相似文献   

3.

Background

Onychomycosis by Neoscytalidium constitutes chronic infection of the nails, and its frequency has increased in recent decades. Currently, no effective standard treatment exists and literature data remain scarce. This work aimed to conduct a pilot project of combined treatment for this infection.

Methods

Thirty patients were divided into three treatment groups: oral terbinafine plus ciclopirox nail lacquer twice a week; ciclopirox nail lacquer twice a week; and ciclopirox nail lacquer 5 days a week, all associated with nail abrasion when required, for 12 months, with 6 months posttreatment follow-up. Clinical and mycological criteria were used for evaluation.

Results

Twenty-five patients completed the study. Significant clinical lesion reduction in disease occurred in all three treatment groups: 21 patients (84 %) entered the study with more than 50 % of diseased nail plate, at the end of treatment, and at 6-month follow-up, 84 and 96 %, respectively, presented less than 25 % nail lesion. Negative microscopy was observed in 36 % of the patients at the end of treatment and in 24 % of the patients at 6-month follow-up. At treatment completion (12 months), culture was negative in 21 patients (84 %) and in 18 (72 %) at follow-up. It was not possible to establish any clinical or mycological statistical differences between groups (p > 0.05). Global medical evaluation upon treatment completion revealed that one patient (4 %) presented complete cure, 8 (32 %) presented partial cure, 16 (64 %) presented therapeutic failure. At the end of follow-up period, 6 patients (24 %) were considered to have recurrence/reinfection.

Conclusions

The results obtained at the 6-month period of follow-up showed marked improvement (96 % of clinical improvement and 72 % of negative culture) of the patients treated for onychomycosis caused by Neoscytalidium in the three tested groups with no statistical differences between them. Multicentric studies with greater number of patients enrolled are necessary to confirm these results.  相似文献   

4.
Context: Pirfenidone (PFD) is an anti-fibrotic and anti-inflammatory agent indicated for the treatment of idiopathic pulmonary fibrosis (IPF). The current oral administration of PFD has several limitations including first pass metabolism and gastrointestinal irritation.

Objective: The aim of this study is to investigate the feasibility of transdermal delivery of PFD using liposomal carrier system.

Materials and methods: PFD-loaded liposomes were prepared using soy phosphatidylcholine (SPC) and sodium cholate (SC). Encapsulation efficiency (EE) of PFD in liposomes was optimized using different preparation techniques including thin film hydration (TFH) method, direct injection method (DIM) and drug encapsulation using freeze–thaw cycles. In vitro drug release study was performed using dialysis membrane method. The skin permeation studies were performed using excised porcine ear skin model in a Franz diffusion cell apparatus.

Results and discussion: The average particle size and zeta-potential of liposomes were 191?±?4.1?nm and ?40.4?±?4.5?mV, respectively. The liposomes prepared by TFH followed by 10 freeze–thaw cycles showed the greatest EE of 22.7?±?0.63%. The optimized liposome formulation was incorporated in hydroxypropyl methyl cellulose (HPMC) hydrogel containing different permeation enhancers including oleic acid (OA), isopropyl myristate (IPM) and propylene glycol (PG). PFD-loaded liposomes incorporated in hydrogel containing OA and IPM showed the greatest flux of 10.9?±?1.04?μg/cm2/h across skin, which was 5-fold greater compared with free PFD. The cumulative amount of PFD permeated was 344?±?28.8?μg/cm2 with a lag time of 2.3?±?1.3?h.

Conclusion: The hydrogel formulation containing PFD-loaded liposomes can be developed as a potential transdermal delivery system.  相似文献   

5.
Tinea unguium caused by dermatophyte species are usually treated with oral antimycotic, terbinafine (TBF). To understand the mechanisms of improvement and recalcitrance of tinea unguium by oral TBF treatment, a method of quantifying dermatophyte viability in the nail was developed, and the viability of dermatophytes was analyzed in toenail lesions of 14 patients with KOH-positive tinea unguium treated with oral TBF 125 mg/day for up to 16 weeks. Mycological tests, including KOH examination and fungal culture, and targeted quantitative real-time PCR for internal transcribed spacer (ITS) region, including rRNA, were demonstrated at the initial visit and after 8 and 16 weeks of treatment. Assays in eight patients showed that average ITS DNA amount significantly decreased, to 44% at 8 weeks and 36% at 16 weeks compared with 100% at initial visit. No significant difference was observed between at 8 and 16 weeks, despite the TBF concentration in the nail supposedly more than 10-fold higher than the minimum fungicidal concentration for dermatophytes. This finding suggests the pathogenic dermatophytes in nail lesions could survive in a dormant form, such as arthroconidia, during oral TBF treatment. Both antimycotic activity and nail growth are important factors in treatment of tinea unguium.  相似文献   

6.
Copaiba oil is used as a popular medicine in the Amazonian forest region, especially due to its anti-inflammatory properties. In this paper, we describe the formulation of hydrogel containing copaiba oil nanoemulsions (with positive and negative charges), its skin permeation, and its anti-inflammatory activity in two in vivo models: mouse ear edema and rat paw edema. Three hydrogels were tested (Carbopol®, hydroxyethylcellulose and chitosan), but only Carbopol® and hydroxyethylcellulose hydrogels presented good stability and did not interfere with the nanoemulsions droplet size and polydispersity index. In skin permeation assay, both formulations, positively charged nanoemulsion (PCN) and negatively charged nanoemulsion (NCN), presented a high retention in epidermis (9.76 ± 2.65 μg/g and 7.91 ± 2.46 μg/cm2, respectively) followed by a smaller retention in the dermis (2.43 ± 0.91 and 1.95 ± 0.56 μg/cm2, respectively). They also presented permeation to the receptor fluid (0.67 ± 0.22 and 1.80 ± 0.85 μg/cm2, respectively). In addition, anti-inflammatory effect was observed to NCN and PCN with edema inhibitions of 69 and 67% in mouse ear edema and 32 and 72% in rat paw edema, respectively. Histological cuts showed the decrease of inflammatory factors, such as dermis and epidermis hyperplasia and inflammatory cells infiltration, confirming the anti-inflammatory effect from both copaiba oil nanoemulsions incorporated in hydrogel.  相似文献   

7.
This study aimed to improve rosmarinic acid (RA) production in the whole plant culture of Solenostemon scutellarioides through elicitation. Amongst selected elicitors methyl jasmonate (MJ), salicylic acid (SA), and yeast extract (YE) caused significant elevation in RA accumulation. Elicitation with MJ (50 μM) and SA (50 μM) caused almost 1.7 and 1.4-fold increase in RA accumulation, respectively, within day 1. While YE (100 μg ml?1) elicitation showed highest RA content (~1.5-fold) in day 3. Preceding the elicitor-induced RA accumulation, there was a notable alteration in the specific activities of RA biosynthetic enzymes viz. phenylalanine ammonia lyase, tyrosine aminotransferase, hydroxyl-phenylpyruvate reductase and rosmarinic acid synthase up on MJ (50 μM), SA (50 μM) and YE (100 mg ml?1) elicitation. Based on differential responses of aforementioned enzymes, RA synthesis was further scaled up through combination of elicitors in pre-optimized doses. In synergy study, at a time exposure with MJ + SA + YE and MJ + SA followed by YE after 24 h has been found to produce significant elevation of RA (2.0 and 1.9-fold, respectively) within 24 h while later maintained a steady state increased level (~1.7 ± 0.2-fold) over control up to day 7.  相似文献   

8.
The aim of this study was to design a novel felbinac (FEL) patch with significantly higher (P?<?0.05) skin permeation amount than the commercial product SELTOUCH® using ion-pair and chemical enhancer strategy, overcoming the disadvantage of the large application area of SELTOUCH®. Six complexes of FEL with organic amines diethylamine (DEA), triethylamine (TEA), N-(2′-hydroxy-ethanol)-piperdine (HEPP), monoethanolamine (MEtA), diethanolamine (DEtA), and triethanolamine (TEtA) were prepared by ion-pair interaction, and their formation were confirmed by differential scanning calorimetry (DSC), powder X-ray diffraction (pXRD), infared spectroscopy (IR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). Subsequently, the effect of ion-pair complexes and chemical enhancers were investigated through in vitro and in vivo experiments using rabbit abdominal skin. Results showed that FEL-TEA was the most potential candidate both in isopropyl palmitate (IPP) solution and transdermal patches. Combining use of 10% N-dodecylazepan-2-one (Azone), the optimized FEL-TEA patch achieved a flux of 18.29?±?2.59 μg/cm2/h, which was twice the amount of the product SELTOUCH® (J?=?9.18?±?1.26 μg/cm2/h). Similarly, the area under the concentration curve from time 0 to time t (AUC0-t ) in FEL-TEA patch group (15.94?±?3.58 h.μg/mL) was also twice as that in SELTOUCH® group (7.31?±?1.16 h.μg/mL). Furthermore, the in vitro skin permeation results of FEL-TEA patch was found to have a good correlation with the in vivo absorption results in rabbit. These findings indicated that a combination of ion-pair and chemical enhancer strategy could be useful in developing a novel transdermal patch of FEL.  相似文献   

9.
The current study aimed to develop a prolonged-release pramipexole (PPX) transdermal patch for the treatment of Parkinson’s disease. Permeation parameters of PPX were investigated using human cadaver skin. Pramipexole patches were prepared using DURO-TAK® pressure-sensitive-adhesive (PSA) and evaluated for drug stability, drug loading, in vitro drug release, and in vitro permeation through mouse skin. The results indicated that blends of DURO-TAK® 87-2852 and DURO-TAK® 87-2510 were suitable for creating a prolonged-release PPX patch due to their advantages in drug release, drug loading, and stability. The final formulation consisted of 87-2852/87-2510 (70:30), 10% PG, and 15% PPX and showed a cumulative permeation amount of 1497.19?±?102.90 μg/cm2 with a continuous flux over 6.0 μg/(cm2·h) across human cadaver skin for 7 days. In vivo studies in rats indicated that PPX patch produced a significantly longer (p?<?0.001) half-life (t 1/2, 75.16?±?17.37 h) and mean residence time (MRT, 135.89?±?24.12 h) relative to oral tablets (Sifrol®) and had a relative bioavailability of 51.64?±?21.32%. Therefore, this study demonstrated the feasibility of developing a prolonged-release PPX patch, which proposed the potential to serve as an alternate to conventional oral tablets and may therefore improve patient compliance.  相似文献   

10.
The aim of this study was to evaluate, for the first time, the antifungal efficacy of nanocapsules and nanoemulsions containing Melaleuca alternifolia essential oil (tea tree oil) in an onychomycosis model. The antifungal activity of nanostructured formulations was evaluated against Trichophyton rubrum in two different in vitro models of dermatophyte nail infection. First, nail powder was infected with T. rubrum in a 96-well plate and then treated with the formulations. After 7 and 14 days, cell viability was verified. The plate counts for the samples were 2.37, 1.45 and 1.0 log CFU mL?1 (emulsion, nanoemulsion containing tea tree oil and nanocapsules containing tea tree oil, respectively). A second model employed nails fragments which were infected with the microorganism and treated with the formulations. The diameter of fungal colony was measured. The areas obtained were 2.88 ± 2.08 mm2, 14.59 ± 2.01 mm2, 40.98 ± 2.76 mm2 and 38.72 ± 1.22 mm2 for the nanocapsules containing tea tree oil, nanoemulsion containing tea tree oil, emulsion and untreated nail, respectively. Nail infection models demonstrated the ability of the formulations to reduce T. rubrum growth, with the inclusion of oil in nanocapsules being most efficient.  相似文献   

11.
Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5?±?3.8 μg CH4 g?1 building material h?1) and low (1.7?±?0.4 μg CH4 g?1 building material h?1) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2?±?10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.  相似文献   

12.
All-trans-retinoic acid (tRA), an active metabolite of vitamin A, directly influences the developing kidney, and is a major regulatory signal during vertebrate organogenesis. The aim of the current study was to specifically target potential critical windows in renal development, and assess altered renal function through disruptions in embryonic fluid compartments. In addition, the effect of exogenous tRA administration on embryonic growth and metabolism was determined. Embryos were exposed to 0.1 or 0.3 mg tRA on embryonic day 8. Morphological and physiological measurements were made on days 12, 14, 16 and 18. Embryo wet mass on day 18 was reduced by 23 % (0.1 mg tRA) and 44 % (0.3 mg tRA). tRA exposure elevated mass-specific oxygen consumption in embryos exposed to 0.1 mg (21.2 ± 0.3 μL?1 g?1 min?1) and 0.3 mg (23.4 ± 0.4 μL?1 g?1 min?1) when compared to sham (18.9 ± 0.6 μL?1 g?1 min?1) on day 14, but not subsequent incubation days. Osmolality of blood plasma was transiently lowered in embryos exposed to 0.3 mg tRA between days 14 and 16. Allantoic fluid osmolality was significantly elevated by tRA to ~220 mmol L?1 from days 16 to 18 compared to controls. Blood plasma [Na+] was reduced by ~17 % over the same period, while allantoic fluid [Na+] was elevated in tRA-treated embryos compared to control embryos. Collectively, our data indicates that exogenous administration of tRA produces significant alterations to the developmental trajectory of the developing embryonic chicken.  相似文献   

13.
Onychomycosis is associated with the cutaneous fungal infection of the nail and the nail folds (skin surrounding the nail). It is therefore important to target drug delivery into the nail folds along with nail plate and the nail bed. Systematic and strategic selection of the penetration enhancers specific for the skin and the nail is discussed. Twelve penetration enhancers were screened for their ability to improve solubility, in vitro nail penetration, in vitro skin permeation, and in vitro skin penetration of the antifungal drug ciclopirox olamine. In contrast to transdermal drug delivery, the main selection criteria for skin penetration enhancer in topical drug delivery were increased drug accumulation in the epidermis and minimal permeation across the skin. Thiourea improved the solubility and nail penetration of ciclopirox olamine. It also showed enhancement in the transungual diffusion of the drug. Propylene glycol showed a 12-fold increase in solubility and 3-fold increase in epidermal accumulation of ciclopirox olamine, while minimizing the transdermal movement of the drug. Thiourea was the selected nail permeation enhancer and propylene glycol was the selected skin penetration enhancer of ciclopirox olamine. A combination of the selected enhancers was also explored for its effect on drug delivery to the nail and nail folds. The enhancer combination reduced the penetration of ciclopirox in the skin and also the permeation through the nail. The proposed preformulation strategy helps to select appropriate enhancers for optimum topical delivery and paves way towards an efficient topical formulation for passive transungual drug delivery.  相似文献   

14.
Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n?=?42; 71?±?12, range 50–101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the “normal” (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53?±?5; 43–61 μg/g) was found at higher levels, followed by Cu (22?±?5; 10–37 μg/g) and Mn (1.3?±?0.3; 0.5–2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70?±?10; 49–95 μg/g) and superior temporal gyrus (68?±?10; 44–88 μg/g) and the lowest in the pons (33?±?8; 19–51 μg/g); the highest levels of Cu and Mn were found in the putamen (36?±?13; 21–76 μg/g and 2.5?±?0.8; 0.7–4.5 μg/g, respectively) and the lowest in the medulla (11?±?6; 2–30 μg/g and 0.8?±?0.3; 0.2–1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.  相似文献   

15.
During seed germination trials of Hypericum hookerianum, seedlings of Lake View accession from Palni hills of Southern India segregated into green- (97.44 %) and red-pigmented (2.56 %) types. Seedlings cultured in Murashige and Skoog (1962) basal medium developed into fast growing green and slow growing red plant types in 6 weeks, the latter showing increased concentrations of total phenols, anthocyanins and flavonoids and 19-fold higher concentration of hypericin. Hypocotyls/cotyledons of red seedlings cultured using 2.325 μM kinetin (KIN) produced hypericin-rich (4.38 ± 0.18 mg/g DW), stunted (0.5–1.2 cm) shoots which ceased to grow in 8 weeks. Segments (4–6 mm) of these shoots sub-cultured in the dark for 4 weeks followed by 2-week light exposure and repeated subculture enabled mass multiplication of productive (3.93 ± 0.06 mg hypericin/g DW) shoots. Green hypocotyls and cotyledons subjected to 4 + 2 weak dark–light treatment also produced 9.18 ± 2.44 and 4.25 ± 0.96 comparable hypericin-rich (3.73 ± 0.21 mg/g DW) shoots. Red and green seedling explants cultured in basal medium in the dark produced 6.82 ± 0.75 cm etiolated shoots with reduced leaves which synthesized 2.27 ± 0.15 mg hypericin/g DW on illumination. Green cotyledons cultured in the dark using 2.45 μM indole-3 butyric acid (IBA) formed calluses which on illumination formed 12.64 ± 3.8 productive (3.86 ± 0.31 mg hypericin/g DW) 0.5- to 1.5-cm-long shoot clusters. Phenotypic segregation of seedlings, the ability of both red and green seedling explants to multiply in the dark and produce hypericin on illumination, and IBA-induced indirect shoots producing significant amounts of metabolite compared to wild plants (0.35 ± 0.09 mg/g DW) and green shoot cultures (0.91 ± 0.03 mg/g DW) are new to Hypericum.  相似文献   

16.
Because the occurrence of Claviceps in European pastures may have been overlooked to cause serious health problem for grazing animals, we documented the degree of Claviceps contamination in two horse pastures and estimated whether the horses could have ingested a critical quantity of alkaloids. We counted the Claviceps sclerotia and determined alkaloid levels using high performance liquid chromatography with fluorescence detection. Depending on the location, the number of sclerotia varied from 0.09 to 0.19 per square meter (central area) and from 0.23 to 55.8 per square meter (border strips). Alkaloid levels in individual sclerotia also varied in different genera of grasses, ranging from 0.98 ± 0.17 μg/kg in Agrostis sp. to 25.82 ± 9.73 μg/kg in Dactylis sp., equivalent to 0.98 μg/kg and 7.26 mg/kg. Sclerotia from Dactylis contained high levels of ergosine (0.209 % ± 0.100 %) and ergocristine (0.374 % ± 0.070 %). Depending on the localization in pastures, alkaloid levels in forage (dry matter, DM) ranged from 16.1 to 45.4 μg/kg in central areas and from 23.9 to 722 μg/kg in border strips. The amount of alkaloids that a horse could have ingested depended on its daily DM uptake, which was higher in the central areas (5.85 kg/day) than in the border strips (2.73 or 0.78 kg/day). In the central areas, this amount of alkaloids ranged from 94.2 to 265.9 μg/day; and in the border strips, from 65.3 (in 2.73 kg DM/day) to as much as 563.8 μg/day (in 0.78 kg DM/day). All these amounts are higher than the European averages for alkaloids ingested by horses via feedstuffs.  相似文献   

17.
Onychomycosis is a fungal infection of nail unit that is caused by dermatophytes. Oral Terbinafine hydrochloride (TBF-HCl) is being used for the treatment of onychomycosis since 24 years. The side effects caused by the systemic application and limitations of topical administration of this drug regarding the diffusion through nail lead to the development of a new formulation based on, TBF-HCl-loaded liposome. The newly obtained film formulations were prepared and characterized via several parameters, such as physical appearance, drug content, thickness, bioadhesive properties and tensile strength. In vitro and ex vivo permeation studies were performed to select an optimum film formulation for antifungal activity to show the efficiency of formulations regarding the treatment of onychomycosis. The in vitro release percentages of drug were found 71.6?±?3.28, 54.4?±?4.26, 56.1?±?7.48 and 46.0?±?2.43 for liposome loaded pullulan films (LI-P, LII-P) and liposome loaded Eudragit films (LI-E, LII-E), respectively. The accumulated drug in the nail plates were found 31.16?±?4.22, 24.81?±?5.35, 8.17?±?1.81 and 8.92?±?3.37 for LI-P, LII-P, LI-E and LII-E, respectively, which within therapeutic range for all film formulations. The accumulated drug in the nail plate was found within therapeutic range for all film formulations. The efficacy of the selected TBF-HCl-loaded liposome film formulation was compared with TBF-HCl-loaded liposome, ethosome, liposome poloxamer gel and ethosome chitosan gel formulations. It was found that TBF-HCl-loaded liposome film formulation had better antifungal activity on fungal nails which make this liposome film formulation promising for ungual therapy of fungal nail infection.  相似文献   

18.
Divalent Metal Transporter 1 (DMT1) is an apical Fe transporter in the duodenum and is involved in endosomal Fe export. Four protein isoforms have been described for DMT1, two from mRNA with an iron responsive element (IRE) and two from mRNA without it. The sets of two begin in exon 1A or 2. We have characterized copper transport using mouse 2/?IRE DMT1 during regulated ectopic expression. HEK293 cells carrying a TetR:Hyg element were stably transfected with pDEST31 containing a 2/?IRE construct. 64Cu1+ incorporation in doxycycline treated cells exhibited 18.6 and 30.0-fold increases in Cu content, respectively when were exposed to 10 and 100 μM of extracellular Cu. Cu content was ~4-fold above that of parent cells or cells carrying just the vector. 64Cu uptake in transfected cells pre-incubated with 5 μM of Cu-His revealed a Vmax and Km of 11.98 ± 0.52 pmol mg protein?1 min?1 and 2.03 ± 0.03 μM, respectively. Doxycycline-stimulated Cu uptake was linear with time. The rates of apical Cu uptake decreased and transepithelial transport increased when intracellular Cu increased. The optimal pH for Cu transport was 6.5; uptake of Cu was temperature dependent. Silver does not inhibit Cu uptake in cells carrying the vector. In conclusion, Cu uptake in HEK293 cells that over-expressed the 2/?IRE isoform of DMT1 transporter supports our earlier contention that DMT1 transports Cu as Cu1+.  相似文献   

19.
Lactoferrin (LF) is a natural component of human milk with antimicrobial, immunostimulatory and immunomodulatory properties. Several in vitro studies suggest that LF could promote an environment in the gut of neonates that favors colonization with beneficial bacteria. However, clinical studies on the correlation between the concentration of LF in breast milk and feces of infants and the gut microbiota in infants are lacking. In our study we analyzed the content of LF and the microbiota of breast milk and feces of infants of 48 mother–infant pairs (34 full-term and 14 pre-term infants) at birth and 30 days after delivery. In the term group, a significant decrease of mean LF concentration between colostrum (7.0 ± 5.1 mg/ml) and mature milk (2.3 ± 0.4 mg/ml) was observed. In pre-term group, breast milk LF levels were similar to those observed in full-term group. Fecal LF concentration of healthy infants was extremely high both in term and pre-term infants, higher than the amount reported in healthy children and adults. In term infants mean fecal LF levels significantly increased from birth (994 ± 1,828 μg/ml) to 1 month of age (3,052 ± 4,323 μg/ml). The amount of LF in the feces of 30 day-old term infants was significantly associated with maternal mature milk LF concentration (p = 0.030) confirming that breast milk represents the main source of LF found in the gut of infants. A linear positive correlation between colostrum and mature milk LF concentration was observed (p = 0.008) indicating that milk LF levels reflect individual characteristics. In pre-term infants higher mean concentrations of fecal LF at birth (1,631 ± 2,206 μg/ml) and 30 days after delivery (7,633 ± 9,960 μg/ml) were observed in comparison to full-term infants. The amount of fecal bifidobacteria and lactobacilli resulted associated with the concentration of fecal LF 3 days after delivery (p = 0.017 and p = 0.026, respectively). These results suggest that high levels of fecal LF in neonates, particularly in the first days of life, could represent an important factor in the initiation, development and/or composition of the neonatal gut microbiota. Since early host–microbe interaction is a crucial component of healthy immune and metabolic programming, high levels of fecal LF in neonates may beneficially contribute to the immunologic maturation and well-being of the newborn, especially in pre-term infants.  相似文献   

20.
This proof-of-concept study explores the feasibility of using a drug-loaded hydrophilic polymeric layer sandwiched between two hydrophobic layers for improving film drug load while achieving sustained release of poorly water-soluble drug. Such films having total thickness in range ~?146–250 μm were prepared by slurry-based casting using hydrophilic hydroxypropyl methylcellulose (HPMC) as matrix layer containing fenofibrate (FNB) as the model drug, encased between two very thin rate-limiting layers of 10 μm each of hydrophobic poly-?-caprolactone (PCL). Film precursor slurry consisted of HPMC with plasticizer and water along with micronized FNB powders, which were dry-coated with hydrophilic silica. Characterization techniques demonstrated the presence of homogeneously dispersed crystalline FNB in films. The films are very thin and hence two-dimensional; hence, average drug load per unit area in range ~?5 to ~?9 mg/cm2 could be achieved by altering the thickness of the drug matrix layer. Drug amount and drug content uniformity were measured through assay of ten circular samples ~?0.712 cm2 in area punched out using a circular-shaped punch tool. Drug release rate was investigated using USP IV flow-through cell and surface dissolution imaging system. Thinner films followed Fickian diffusion, and thicker films followed non-Fickian anomalous diffusion. Overall, the application of middle layer thickness could be used as a tool to manipulate drug load without the need for altering its formulation or precursor preparation by changing its thickness, hence achieving relatively high drug loading yet having sustained release of drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号