首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize seedlings were grown in pots either with or without preconditionedseeds of the parasitic weed, Striga hermonthica. After between4 and 8 weeks, net photosynthesis in the leaves of maize plantsinfected with Striga decreased compared to leaves of uninfectedcontrol plants. The activities of four enzymes of photosyntheticmetabolism were, however, little affected by infection. A pulse-chaseexperiment using 14CO2 showed that C4 acids were the main earlyproducts of assimilation even when the rate of photosynthesiswas much decreased by infection, but more radio-activity appearedin glycine and serine than in leaves of healthy maize plants.Leaves of infected maize required longer to reach a steady rateof photosynthesis upon enclosure in a leaf chamber than leavesof uninfected plants after similar treatment. Electron microscopy of transverse sections of the leaves ofinfected maize indicated that the cell walls in the bundle sheathand vascular tissue were less robust than in leaves of healthyplants. The results suggest that infection with Striga causesan increase in the permeability of cell walls in the bundlesheath, leakage of CO2 from the bundle sheath cells and decreasedeffectiveness of C4 photosynthesis in host leaves. Key words: Zea mays, Striga hermonthica, photosynthesis, photorespiration, enzyme activity  相似文献   

2.
Striga hermonthica (Del.) Benth. is an obligate hemiparasiticangiosperm which can cause severe losses of yield in cerealcrops in the semi-arid tropics. The effects of this parasiteon the growth and stomatal conductance of three varieties ofmaize (Zea mays L.) during the first 6 weeks of the associationhave been studied. From 24 d after planting (DAP), infectedplants were significantly shorter than uninfected controls.When the plants were harvested 45 DAP, infected plants had fewerfully expanded leaves, less leaf biomass and less pseudo-stembiomass than uninfected controls. However, the parasitized plantshad more root biomass and hence a higher root:shoot ratio thanuninfected controls. The stomatal conductance of infected hostswas severely inhibited by comparison with that in uninfectedplants. The possibility that abscisic acid (ABA) may be involved inthe regulation of the parasitic association was investigated.ABA concentrations in leaf tissue of maize (cv. Cargimontana)and S. hermonthica were determined by radioimmunoassay. Whilethere was a difference between cultivars in the extent of theresponse, the concentrations of ABA were significantly higherin infected maize plants than in the uninfected controls. InS. hermonthica, leaf tissue ABA concentration was found to bean order of magnitude higher than in the host leaf tissue. Detachedleaves of S. hermonthica which were dehydrated at room temperatureuntil they had lost 10–20% of their fresh weight containedthree times the ABA concentration of control leaves. This suggeststhat leaves of S. hermonthica can synthesize or re-mobilizeABA in response to water deficit. It is not yet known whetherthis contributes to the higher concentration in infected hosts,but the results suggest that ABA has a role in this parasiticassociation. Key words: Striga hermonthica, abscisic acid, growth, parasitic angiosperm, stomatal conductance  相似文献   

3.
We report the effects of the root hemiparasite Striga hermonthica (Del.) Benth. on the growth and photosynthesis of two cultivars of sorghum: CSH-1, a susceptible variety, and Ochuti, which shows some tolerance to S. hermonthica in the field. Within 4 d of parasite attachment to the host roots, infected plants of both cultivars were significantly shorter than uninfected controls. At 55 d, infected plants of both cultivars had significantly less shoot and root biomass, and significantly smaller leaf areas than uninfected controls. The dry weight of S. hermonthica attached to host roots was insufficient at this stage to explain the decreased growth in terms of a competing sink for carbon and nitrogen. Leaf chlorophyll and nitrogen per unit area were greater in infected plants of both cultivars compared with control plants. However, whereas photosynthesis and transpiration in young leaves of infected CSH-1 plants declined with time when compared with controls, the rates in infected Ochuti plants were similar to those in uninfected controls throughout the time course of observation. In both cultivars, a strong correlation was observed between the rate of photosynthesis and stomatal conductance during photosynthetic induction, but infection resulted in a much slower induction than in controls. In CSH-1 plants, both steady-state photosynthesis and stomatal conductance were lower than in controls, whereas in leaves of Ochuti steady-state photosynthesis and stomatal conductance eventually reached the same values as in the control leaves. Results from AlCi analysis and also from determination of 13C isotope discrimination were consistent with a stomatal limitation to photosynthesis in the leaves of Striga-infected plants. The concentration of the plant growth regulator abscisic acid (ABA) was measured in the xylem sap of infected CSH-1 plants only, and was found to be twice that of uninfected plants. A possible role of ABA in determining host response to infection by S. hermonthica is discussed.  相似文献   

4.
Two cultivars of sorghum (CK60 and Ochuti) and one cultivarof maize (H511) were grown in field plots in western Kenya inthe presence or absence of the parasitic angiosperm Striga hermonthica,with or without a single addition of nitrogen fertilizer (150kg N ha–1) using a factorial design. A progressive declinein rates of photosynthesis of Striga-infected plants were observedfor the sorghum cultivar CK60 from 30 d after planting (DAP)and for maize from 40 DAP, until measurements ended 63 DAP.At this time photosynthetic rates were 46% and 31% lower inthe Striga-infected sorghum and maize cultivars, respectively,compared to uninfected control plants. No decline in photosynthesiswas observed in the second sorghum cultivar studied, Ochuti,a local land race reported to show some tolerance to the parasite.The trends in photosynthesis reflected stunting of the cereals,as determined by the height of the youngest emerged ligule,however, only the grain yield of the sorghum cultivar CK60 wassignificantly reduced by the presence of the parasite. The nitrogenapplication influenced neither the growth nor the photosyntheticparameters measured, and possible explanations for the absenceof responses are discussed. It is concluded that S. hermonthicacan reduce photosynthetic rates of field-grown sorghum and maize,and suggest that an ability to maintain high rates of photosynthesiswhilst infected may be an important correlate of tolerance tothe parasite. Key words: Parasitic angiosperm, photosynthesis, nitrogen, tropical weeds, tropical agriculture  相似文献   

5.
Two common tallgrass prairie species, Andropogon gerardii, thedominant C4 grass in this North American grassland, and Salviapitcheri, a C3 forb, were exposed to ambient and elevated (twiceambient) CO2 within open-top chambers throughout the 1993 growingseason. After full canopy development, stomatal density on abaxialand adaxial surfaces, guard cell length and specific leaf mass(SLM; mg cm-2) were determined for plants in the chambers aswell as in adjacent unchambered plots. Record high rainfallamounts during the 1993 growing season minimized water stressin these plants (leaf xylem pressure potential was usually >-1·5 MPa in A. gerardii) and also minimized differencesin water status among treatments. In A. gerardii, stomatal densitywas significantly higher (190 ± 7 mm-2; mean ±s.e.) in plants grown outside of the chambers compared to plantsthat developed inside the ambient CO2 chambers (161 ±5 mm-2). Thus, there was a significant 'chamber effect' on stomataldensity. At elevated levels of CO2, stomatal density was evenlower (P < 0·05; 121 ± 5 mm-2). Most stomatawere on abaxial leaf surfaces in this grass, but the ratio ofadaxial to abaxial stomatal density was greater at elevatedlevels of CO2. In S. pitcheri, stomatal density was also significantlylower when plants were grown in the open-top chambers (235 ±10 mm-2 outside vs. 140 ± 6 mm-2 in the ambient CO2 chamber).However, stomatal density was greater at elevated CO2 (218 ±12 mm-2) compared to plants from the ambient CO2 chamber. Theratio of stomata on adaxial vs. abaxial surfaces did not varysignificantly in this herb. Guard cell lengths were not significantlyaffected by growth in the chambers or by elevated CO2 for eitherspecies. Growth within the chambers resulted in lower SLM inS. pitcheri, but CO2 concentration had no effect. In A. gerardii,SLM was lower at elevated CO2. These results indicate that stomataland leaf responses to elevated CO2 are species specific, andreinforce the need to assess chamber effects along with treatmenteffects (CO2) when using open-top chambers.Copyright 1994, 1999Academic Press Andropogon gerardii, elevated CO2, Salvia pitcheri, stomatal density, tallgrass prairie  相似文献   

6.
Leaf temperatures (T1) of the parasitic plant Striga hermonthicaare substantially below those of the air (Ta), [TaT1]reaching 7 ?C at Ta = 40 ?C. This results from high rates oftranspiration and the consequent evaporative cooling of theleaf. Application of an antitranspirant, which mechanicallyimpedes foliar loss of water vapour, reduced transpiration andstomatal conductance by 40% and 57%, respectively, and reduced[TaT1] to 2 ?C at Ta = 40 ?C. The temperature sensitivityof photosynthesis in the host-parasite association differed,the optima (Topt) being 37.2 and 40.1 ?C for S. hermonthicaand sorghum, respectively. Once Topt had been exceeded in S.hermonthica net photosynthesis declined rapidly, reaching thelethal limit (Tmax) at 42.6 ?C. S. hermonthica is particularlysensitive to high temperatures and antitranspirant-induced overheatingleads to blackening and shrivelling of the leaf after as littleas 4 h at Ta = 40 ?C. Application of an antitranspirant underfield conditions in the Sudan at Ta = 40 ?C resulted in 28%and 67% reductions in transpiration and stomatal conductance,together with a 5 ?C increase in T1, and subsequent leaf death.In addition to these short-term physiological responses, antitranspirantspraying of the arasite increased the grain and straw yieldof the crop by factors of 3.4 and 2.6, respectively. Antitranspirantsmay have potential use as a method of controlling Striga inthe field. Key words: Striga hermonthica, sorghum, photosynthesis, transpiration, high temperature stress, anti-transpirant  相似文献   

7.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

8.
Plants of Phaseolus vulgaris L were grown from seed in open-topgrowth chambers at present day (350 µmol mol–1)and double the present day (700 µmol mol–1) atmosphericCO2 concentration with either low (L, without additional nutrientsolution) or relatively high (H, with additional nutrient solution)nutrient supply Measurements of assimilation rate, stomatalconductance and water use efficiency were started 17 d aftersowing on each fully expanded, primary leaf of three plantsper treatment Measurements were made in external CO2 concentrations(C2) of 200, 350, 450, 550 and 700 µmol mol–1 andrelated to both Ca and to C1, the mean intercellular space CO2concentration Fully adjusted, steady state measurements weremade after approx 2 h equilibration at each CO2 concentration The rate of CO2 assimilation by leaves increased and stomatalconductance decreased similarly over the range of Ca or C1 inall four CO2 and nutrient supply treatments but both assimilationrate and stomatal conductance were higher in the high nutrientsupply treatment than in the low nutrient treatment The relationbetween assimilation rate or stomatal conductance and C1 wasnot significantly different amongst plants grown in present-dayor elevated CO2 concentration in either nutrient supply treatment,i e there was no evidence of down regulation of photosynthesisor stomatal response Increase in CO2 concentration from 350to 700 µmol mol–1 doubled water use efficiency ofindividual leaves in the high nutrient supply treatment andtripled water use efficiency in the low nutrient supply treatment The results support the hypothesis that acclimation phenomenaresult from unbalanced growth that occurs after the seed reservesare exhausted, when the supply of resources becomes growth limiting CO2 enrichment, Phaseolus vulgaris L., net CO2 assimilation rate, stomatal conductance, water use efficiency  相似文献   

9.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

10.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

11.
The C4 cereal Sorghum bicolor was grown under either ambient (350 μmol mol?1) or elevated (700 μmol mol?1) [CO2] in either the presence or absence of the C3 obligate root hemi-parasites Striga hermonthica or S. asiatica. Both uninfected and infected sorghum plants were taller and had greater biomass, photosynthetic rates, water-use efficiencies and leaf areas under elevated compared with ambient [CO2]. There was no evidence of any downregula-tion of photosynthesis in sorghum grown at elevated [CO2]. Biomass of infected sorghum was lower under both ambient and elevated [CO2], and although infected plants were larger under elevated [CO2] the relative impact of infection on host biomass was either the same (S. asiatica) or only slightly less (S. hermonthica) than under ambient [CO2]. In contrast, biomass of S. hermonthica and S. asiatica per host was lower under elevated than ambient [CO2], although rates of photosynthesis were higher at elevated [CO2] and parasite stomatal conductance was not responsive to [CO2]. Parasites emerged above-ground and flowered earlier under ambient compared with elevated [CO2]. It appears that the mechanism(s) by which the parasites affect host growth is (are) relatively insensitive to increased atmospheric [CO2], although the parasites themselves were adversely affected by growth at elevated [CO2].  相似文献   

12.
Gas exchange in Clusia rosea has been measured under variousconditions of water status, light and leaf-air vapour pressuredeficit (w, mbar bar–1) which produce daytime (C3), night-time(CAM) or 24 h uptake of CO2. At high light levels, at a w of6.6, well-watered plants utilized C3 photosynthesis while CAMand 24 h uptake occurred under lower light levels and with lowto normal water availability and differing w (13.5 and 3.4,respectively). CO2 uptake was highest, stomatal conductanceto water vapour (gH2o) lowest, and water use efficiency (WUE)highest in plants using C3 photosynthesis. This latter factis contrary to the accepted view that CAM is most water useefficient, i.e. it optimizes CO2 uptake with minimal water loss.It is suggested that the low CO2 uptake in CAM photosynthesismay be related not only to the higher w but also to the factthat Clusia species accumulate citrate which may originate fromß-carboxylation of fatty acids (i.e. an internal sourceof CO2) and does not contribute to night-time external CO2 assimilation.Curves of assimilation (A) versus internal partial pressureof CO2 (A/c1) for the three photosynthetic types, under atmosphericconditions, did not produce a single trend. The trends whichwere produced represent the supply function for the interaction,under differing modes of photosynthesis, of the two major enzymesystems involved in CAM. Key words: Clusia rosea, Crassulacean acid metabolism, C3 photosynthesis, internal CO2 concentration, 24 h carbon dioxide uptake, water use efficiency.  相似文献   

13.
The uptake and partitioning of nitrogen (N) by maize infectedwith the parasitic angiosperm,Striga hermonthicawas investigatedin sand culture in a glasshouse. The purpose was to determinethe effect ofStrigaon N uptake and partitioning in maize. Maizewas grown at 22, 66 and 133 mg N per plant and sampled fivetimes. There was no significantStrigaxN interaction in any measuredresponse. Leaf dry matter ofStriga-infected maize, averagedover all N treatments, was 92% that of uninfected maize at thefour-leaf stage but by the 18-leaf stage it had decreased to58%. Similarly, stem dry matter of infected maize which was91% that of uninfected maize at the four-leaf stage was only42% at the 18-leaf stage. Root dry matter was similar for infectedand uninfected maize. N concentration in the leaf, stem androot declined asymptotically from the first to the last samplingdate for both infected and uninfected maize. The asymptoticvalue of N concentration inStriga-infected maize was 16% greaterin the leaf, 55% in the stem, and 21% in the root than in uninfectedmaize. The concentration of N inStrigawas higher than in maizeat the 16- and 18-leaf stages. Uptake of N was similar for infectedand uninfected plants at the four–eight leaf stage butat the eight–12 leaf stage, N uptake by infected maizewas 52% that of uninfected maize. However, the proportion oftotal plant nitrogen partitioned to the root was greater (P<0.001)forStriga-infected maize. These results showed that the extentto whichS. hermonthicareduced maize growth and N uptake, butincreased the proportion of N partitioned to the roots, didnot depend on the rate of N fertilizer applied.Copyright 1998Annals of Botany Company Maize; nitrogen; partitioning;Striga hermonthica; uptake.  相似文献   

14.
Abstract Growth and gas exchange measurements are used in conjunction with a carbon balance model to describe the millet (Pennisetum typhoides)–witchweed (Striga hermonthica) host—parasite association. Striga hermonthica reduces the growth of millet by 28% and radically alters the architecture of infected plants. Whilst grain yield and stem dry weight are reduced (by 80 and 53%, respectively), leaf and root growth are stimulated (by 41 and 86%, respectively). The difference in production between infected and uninfected millet plants can be accounted for by two processes: first, export of carbon to the parasite (accounting for 16% of the dry weight not gained); and second, parasite-induced reductions in host photosynthesis (accounting for 84% of the dry weight not gained). Striga hermonthica is dependent on carbon exported from the host, since the plant has low rates of photosynthesis coupled with high rates of respiration. The carbon balance model suggests that in mature S. hermonthica plants parasitic on millet, 85% of the carbon is host-derived. Carbon fluxes are also estimated using δ13C measurements, since S. hermonthica is a C3 plant parasitizing a C4 host. In conjunction with gas exchange measurements, these suggest that in root, stem and leaf of S. hermonthica, 87, 70 and 49% of carbon is hostderived, respectively.  相似文献   

15.
Gas exchange characteristics are reported for both members of the sorghum-Striga host-parasite association. Both Striga hermonthica (Del.) Benth and Striga asiatica (L.) Kuntze had transpiration rates considerably in excess of those of sorghum (Sorghum bicolor (L.) Moench, cv CSH1). Stomatal conductance in both Striga spp. showed little response to periods of darkness and moderate water stress. Low rates of net CO2 fixation and high rates of dark respiration led to no net daily (24 hours) C gain, and Striga would appear to be reliant on its host for photosynthate. Infection of sorghum plants with either S. hermonthica or S. asiatica reduced host photosynthetic capacity. Infected sorghum plants were also more prone to water stress, but reduced rates of CO2 fixation could not be accounted for in terms of lower stomatal conductance. Lower stomatal conductances were associated with an increase in water use efficiency (WUE) in uninfected sorghum; however, Striga-infected sorghum plants had lower WUE than those of uninfected plants. We suggest that Striga exerts a specific effect on processes affecting C acquisition in sorghum leaves. The water relations of S. hermonthica and S. asiatica are not characteristic of plants growing in semiarid environments and are more likely to reflect the nature of the parasitic life-style. Despite transfer of water and solutes from host to parasite, the reduction in C fixation observed in infected sorghum plants appears to be the major determinant of growth reductions observed in sorghum supporting Striga.  相似文献   

16.
Stomatal Responses of Variegated Leaves to CO2 Enrichment   总被引:1,自引:0,他引:1  
The responses of stomatal density and stomatal index of fivespecies of ornamental plants with variegated leaves grown attwo mole fractions of atmospheric CO2 (350 and 700 µmolmol-1) were measured. The use of variegated leaves allowed anypotential effects of mesophyll photosynthetic capacity to beuncoupled from the responses of stomatal density to changesin atmospheric CO2 concentration. There was a decrease in stomataldensity and stomatal index with CO2 enrichment on both white(unpigmented) and green (pigmented) leaf areas. A similar responseof stomatal density and index was also observed on areas ofleaves with pigmentation other than green indicating that anydifferences in metabolic processes associated with colouredleaves are not influencing the responses of stomatal densityto CO2 concentrations. Therefore the carboxylation capacityof mesophyll tissue has no direct influence on stomatal densityand index responses as suggested previously (Friend and Woodward1990 Advances in Ecological Research 20: 59-124), instead theresponses were related to leaf structure. The stomatal characteristics(density and index) of homobaric variegated leaves showed agreater sensitivity to CO2 on green portions, whereas heterobaricleaves showed a greater sensitivity on white areas. These resultsprovide evidence that leaf structure may play an important rolein determining the magnitude of stomatal density and index responsesto CO2 concentrations.Copyright 1995, 1999 Academic Press Leaf structure, photosynthesis, stomatal conductance, CO2, stomatal density, stomatal index  相似文献   

17.
Excised leaves of a C3-photosynthetic type, Hordeum vulgare,a C4-type, Panicum miliaceum, and an intermediate-type, Panicummilioides, were allowed to take up through their cut ends a1 mM solution of butyl hydroxybutynoate (BHB), an irreversibleinactivator of glycolate oxidase. After 30 to 60 min in BHB,extractable glycolate oxidase activity could not be detectedin the distal quarter of the leaf blades. Following this pretreatment,recovery of 14C-glycolate from 14CO2 incorporated in a 10 minperiod was nearly maximal for each of the three plant types.Labeled glycolate was 51% of the total 14CO2 incorporated forthe C3-species, 36% for the intermediate-species, and 27% forthe C4-species Increased labeling of glycolate was compensatedfor primarily by decreased labeling of the neutral and basicfractions for the C3 and intermediate-type species. In the C4-type,label decreased primarily in the neutral and insoluble fractions,but increased in the basic fraction. A lower rate of glycolatesynthesis is indicative of a lower rate of photorespirationand consistent with a lower O2/CO2 ratio present in the bundle-sheathcells of C4-plants. We conclude that both decreased glycolatesynthesis and the refixation of photorespiratory-released CO2are important in maintaining a lower rate of photorespirationin C4-plants compared to C3 plants. Intermediate glycolate synthesisin Panicum milioldes is consistent with its intermediate levelof O2 inhibition of photosynthesis and intermediate rate ofphotorespiration. (Received May 6, 1978; )  相似文献   

18.
Carbon dioxide and water vapour exchanges for single attachedleaves of the temperate C4 grass Spartina townsendii were measuredunder controlled environment conditions in an open gas-exchangesystem. The responses of net photosynthesis, stomatal resistance,and residual resistance to leaf temperature and photon fluxdensity are described. The light and temperature responses ofnet photosynthesis in S. townsendii are compared to informationon these responses in both temperate C3 grasses and sub-tropicalC4 grasses. Adaptation of photosynthesis in this C4 speciesto a cool temperate climate is indicated both by the light andtemperature responses of net photo-synthesis. Unlike the C4grasses examined previously, significant rates of net photosynthesiscan be detected at leaf temperatures below 10?C. Rates of netphotosynthesis equal or exceed those reported for temperateC3 grasses at all of the temperature (5–40?C) and photonflax density (13–2500µmol m–2 s–1) conditionsexamined. Maximum rates of net photosynthesis in S. townsendiiare almost double those reported for C3 herbage grasses. Unliketemperate C3 grasses, the major limitation to net photosynthesisat low leaf temperatures (10?C and below) is the stomatal resistance,showing that the low residual resistance characteristic of C4species is maintained in S. townsendii even at low leaf temperatures.  相似文献   

19.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

20.
Pascopyrum smithii (C3) andBouteloua gracilis (C4) are importantforage grasses native to the Colorado shortgrass steppe. Thisstudy investigated photosynthetic responses of these grassesto long-term CO2enrichment and temperature in relation to leafnonstructural carbohydrate (TNC) and [N]. Glasshouse-grown seedlingswere transferred to growth chambers and grown for 49 d at twoCO2concentrations (380 and 750 µmol mol-1) at 20 and 35°C, and two additional temperatures (25 and 30 °C) at750 µmol mol-1CO2. Leaf CO2exchange rate (CER) was measuredat a plant's respective growth temperature and at two CO2concentrationsof approx. 380 and 700 µmol mol-1. Long-term CO2enrichmentstimulated CER in both species, although the response was greaterin the C3,P. smithii . Doubling the [CO2] from 380 to 750 µmolmol-1stimulated CER ofP. smithii slightly more in plants grownand measured at 30 °C compared to plants grown at 20, 25or 35 °C. CO2-enriched plants sometimes exhibited lowerCER when compared to ambient-grown controls measured at thesame [CO2], indicating photosynthetic acclimation to CO2growthregime. InP. smithii , such reductions in CER were associatedwith increases in TNC and specific leaf mass, reductions inleaf [N] and, in one instance, a reduction in leaf conductancecompared to controls. InB. gracilis , photosynthetic acclimationwas observed more often, but significant changes in leaf metabolitelevels from growth at different [CO2] were generally less evident.Temperatures considered optimal for growth (C3: 20 °C; C4:35 °C) sometimes led to CO2-induced accumulations of TNCin both species, with starch accumulating in the leaves of bothspecies, and fructans accumulating only inP. smithii. Photosynthesisof both species is likely to be enhanced in future CO2-enrichedand warmer environments, although responses will sometimes beattenuated by acclimation. Acclimation; blue grama (Bouteloua gracilis (H.B.K.) Lag ex Steud.); leaf nitrogen concentration; nonstructural carbohydrates; photosynthesis; western wheatgrass (Pascopyrum smithii (Rydb.) Love)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号