首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cholera toxin (CT) stimulated the release of arachidonic acid (AA) from Chinese hamster ovary cells with no apparent lag period. CT-induced release of [3H]AA or its metabolites was dose dependent during a 4-hr period of toxin exposure with a minimum effective dose of 0.1 ng/ml. CT-induced release of [3H]AA metabolites began within 15 min of toxin addition and became maximal after approximately 5 hr. Neither CT-A subunit nor CT-B subunit alone caused [3H]AA release. Furthermore, [3H]AA release was not caused by addition of dibutyryl cAMP to the culture medium, indicating that the observed effect of CT on arachidonate metabolism appeared to be independent of cAMP. The effect of CT on AA metabolism is proposed as a possible mechanism leading to the synthesis of prostaglandin E and fluid secretion during cholera.  相似文献   

2.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The purpose of this investigation was to study the mechanism of stimulation of PGE2 output from human amnion epithelial cells by the synthetic glucocorticoid dexamethasone. Cells incubated in serum-free pseudo-amniotic fluid produced very low levels of PGE2, even when arachidonic acid (1 microM) was present. Pretreatment of cells with dexamethasone (50 nM) for 21 h increased the PGE2 output 6- to 7-fold in 2-h incubations only in the presence of arachidonic acid. The RNA synthesis inhibitor, actinomycin D (1 microgram/ml), and the protein synthesis inhibitor, cycloheximide (40 micrograms/ml), each blocked dexamethasone-stimulated arachidonic acid conversion to PGE2. The time course of these events suggests that dexamethasone first initiates RNA synthesis. Acetylsalicylic acid, a specific and irreversible blocker of prostaglandin endoperoxide H synthase (cyclooxygenase), was used to determine whether dexamethasone could stimulate new enzyme synthesis. Cells treated first with acetylsalicylic acid (30 min) then dexamethasone (22 h) produced as much PGE2 in response to 1 microM arachidonate as did cells exposed to dexamethasone only. Exposing cells to acetylsalicylic acid after dexamethasone completely eliminated PGE2 output. These data suggest that dexamethasone stimulates the synthesis of prostaglandin endoperoxide H synthase.  相似文献   

4.
Stimulation of prostaglandin synthesis in transformed mouse fibroblasts by serum, thrombin, and bradykinin was blocked by actinomycin D and cycloheximide. These RNA and protein synthesis inhibitors did not affect prostaglandin synthetase in vitro or in vivo; nor did they affect the acylation of arachidonic acid into phospholipids. Serum-stimulated release of arachidonic acid and prostaglandins from [3H]arachidonic acid-labeled cells also was inhibited by actinomycin D and cycloheximide. RNA and protein synthesis appear to be required for expression of phospholipase activity; a prerequisite for prostaglandin synthesis by these cells.  相似文献   

5.
Cholera toxin induces cAMP-independent degradation of Gs   总被引:8,自引:0,他引:8  
Cholera toxin stimulates adenylyl cyclase by catalyzing ADP-ribosylation of the alpha chain (alpha s) of Gs, a guanine nucleotide binding regulatory protein. In a rat pituitary cell line, GH3, the toxin-induced increase in GTP-dependent adenylyl cyclase activity is maximal at 1 h; adenylyl cyclase remains elevated for at least 32 h. Surprisingly, cholera toxin also induces a 74-95% decrease in the amount of immunoreactive alpha s in the same cells, as assessed on immunoblots probed with either of two antisera directed against separate alpha s peptide sequences. The decrease in immunoreactive alpha s, which begins after 1 h of toxin treatment and is complete by 8 h, is accompanied by a comparable decrease in the amount of biochemically active alpha s, as assessed by its ability to complement the biochemical defect of alpha s-deficient S49 cyc- membranes. Cholera toxin induces similar decreases in alpha s in wild type S49 lymphoma cells, in S49 kin- mutants, which lack cAMP-dependent protein kinase, and in S49 H21 a mutants, in which alpha s is unable to assume an active conformation upon binding GTP. The toxin-induced decrease in alpha s is somewhat temperature-dependent, but is not blocked by agents that increase lysosomal pH or by colchicine, which promotes breakdown of microtubules. alpha s in detergent-solubilized GH3 membranes is susceptible to proteolysis by an endogenous protease; this susceptibility is markedly increased in membranes from cells previously exposed to cholera toxin for 1 h. Taken together, these results suggest that cholera toxin-induced covalent modification of alpha s marks the protein for accelerated degradation. In addition, the persistence of elevated GTP-dependent adenylyl cyclase activity despite loss of a substantial fraction of alpha s suggests that the amount of alpha s membranes is greater than the amount necessary for maximal activation of cAMP synthesis by cholera toxin.  相似文献   

6.
Chloroquine inhibition of cholera toxin   总被引:1,自引:0,他引:1  
Cholera toxin (CT) stimulated adenylate cyclase and a phospholipase which elevated cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and arachidonic acid (AA). The AA was quickly converted to prostaglandins (PGs) via the cyclo-oxygenase pathway. Chloroquine exerted minimal inhibition of cAMP levels in CT-treated cells, although CT-induced release of [3H]AA and PGs was blocked completely when the drug was added in concentrations as low as 0.1 mM (50 micrograms/ml). Inhibition of [3H]AA release was complete when chloroquine was added before or within 30 min after CT. The capacity of chloroquine to inhibit either phospholipase C (PLC) or phospholipase A2 (PLA2) could explain the antisecretory activity of this drug.  相似文献   

7.
The effects of indomethacin on intestine mucosal cAMP, intestinal fluid secretion, and mucosal and fluid PGE were studied in rabbits in vivo following challenge with cholera toxin. Indomethacin had no effect on cholera toxin-induced fluid secretion or cAMP accumulation. Inhibition of PGE synthesis was achieved by the administration of two but not one injection of indomethacin. These studies provide evidence against a role for PGE in mediating cholera toxin-induced secretion and point out the need to measure prostaglandin levels when using prostaglandin synthetase inhibitors in vivo.  相似文献   

8.
The effects of indomethacin on intestine mucosal cAMP, intestinal fluid secretion, and mucosal and fluid PGE were studied in rabbits in vivo following challenge with cholera toxin. Indomethacin had no effect on cholera toxin-induced fluid secretion or cAMP accumulation. Inhibition of PGE synthesis was achieved by the administration of two but not one injection of indomethacin. These studies provide evidence against a role for PGE in mediating cholera toxin-induced secretion and point out the need to measure prostaglandin levels when using prostaglandin synthetase inhibitors in vivo.  相似文献   

9.
Previous studies have demonstrated that catecholamine responsiveness in a variety of cells can be altered by inhibitors of RNA and protein synthesis. The neuroblastoma-glioma hybrid, NG108-CC15, which lacks catecholamine-stimulated accumulation of cyclic AMP, was investigated to determine if the responsiveness to prostaglandin E1 (PGE1) could be modified by inhibitors of protein synthesis. Cycloheximide in a time-dependent manner potentiated the ability of prostaglandin E1 to stimulate accumulation of intracellular cyclic AMP. However, the alpha-adrenergic inhibition of the prostaglandin response was not affected by cycloheximide. Withdrawal of norepinephrine following a long-term incubation resulted in a potentiation of subsequent PGE1-stimulated cyclic AMP accumulation. Cycloheximide enhanced this norepinephrine withdrawal effect. Our previous studies have shown that cholera toxin induces refractoriness to beta-adrenergic agonists in C6-2B rat astrocytoma cells and that cycloheximide blocked this action of cholera toxin. In an analogous manner cholera toxin caused refractoriness to subsequent prostaglandin-stimulated cyclic AMP production in NG108-CC15 cells, and cycloheximide reduced cholera toxin-induced prostaglandin refractoriness. Thus cycloheximide potentiates the prostaglandin stimulatory effect, has no effect on the ability of alpha-agonists to inhibit the prostaglandin response, increases the stimulatory effect of PGE1 after norepinephrine withdrawal, and reduces cholera toxin-induced PGE1 refractoriness. these observations suggest that PGE1-stimulated cyclic AMP accumulation in NG108-CC15 cells contains components which are regulated by de novo protein synthesis.  相似文献   

10.
Helicobacter pylori initiates an inflammatory response and gastric diseases, which are more common in patients infected with H. pylori strains carrying the pathogenicity island, by colonizing the gastric epithelium. In the present study we investigated the mechanism of prostaglandin E(2) (PGE(2)) synthesis in response to H. pylori infection. We demonstrate that H. pylori induces the synthesis of PGE(2) via release of arachidonic acid predominately from phosphatidylinositol. In contrast to H. pylori wild type, an isogenic H. pylori strain with a mutation in the pathogenicity island exerts only weak arachidonic acid and PGE(2) synthesis. The H. pylori-induced arachidonic acid release was abolished by phospholipase A(2) (PLA(2)) inhibitors and by pertussis toxin (affects the activity of G alpha(i)/G alpha(o)). The role of phospholipase C, diacylglycerol lipase, or phospholipase D was excluded by using specific inhibitors. An inhibitor of the stress-activated p38 kinase (SB202190), but neither inhibitors of protein kinase C nor an inhibitor of the extracellular-regulated kinase pathway (PD98059), decreased the H. pylori-induced arachidonic acid release. H. pylori-induced phosphorylation of p38 kinase and cytosolic PLA(2) was blocked by SB202190. These results indicate that H. pylori induces the release of PGE(2) from epithelial cells by cytosolic PLA(2) activation via G alpha(i)/G alpha(o) proteins and the p38 kinase pathway.  相似文献   

11.
Recent reports suggest that prostaglandins, rather than cAMP, play a major role in mediating cholera toxin-induced water and electrolyte secretion from rabbit intestinal loops. We examined the role of prostaglandins in mediating toxin-induced pancreatic and gastric exocrine secretion. In these tissues, indomethacin, a potent inhibitor of prostaglandin synthesis, did not alter the stimulatory effects of cholera toxin on increases in cellular cAMP or enzyme secretion. Moreover, the addition of cholera toxin did not alter prostaglandin E2 release from either tissue. In contrast to their effects in rabbit intestinal loops, prostaglandins do not regulate cholera toxin-induced enzyme secretion from the guinea pig pancreas or stomach.  相似文献   

12.
To determine if increased endometrial vascular permeability (a response which precedes decidualization) could be obtained in temporally nonsensitized uteri by treatments designed to increase endometrial adenosine 3':5'-cyclic monophosphate (cAMP) concentrations, cholera toxin (an activator of adenylate cyclase) was injected into the uterine lumen of immature rats treated to be at the equivalent of day 4, 5, or 6 of pseudopregnancy. In all experiments, the rats were pretreated with indomethacin to inhibit endogenous prostaglandin (PG) synthesis. Endometrial vascular permeability, determined using 125I-labeled bovine serum albumin, was assessed 8 h later. Cholera toxin increased endometrial vascular permeability to the same level in all groups. As determined by uterine weights 5 days after the intrauterine administration of cholera toxin or its vehicle, the toxin produced the same extent of decidualization in all groups. Cholera toxin had no detectable effect on uterine cAMP concentrations in rats sacrificed 15 min after intrauterine treatment. In contrast, intrauterine administration of PGE2 increased uterine cAMP concentrations at 15 min in all groups. These data suggest that the effects of cholera toxin and of PGE2 on endometrial vascular permeability and decidualization are not mediated by cAMP.  相似文献   

13.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] regulates the synthesis of bone gamma-carboxyglutamic acid (Gla) protein (BGP) by osteoblastic cells. In this study we examined the effect of cAMP, alone and in combination with 1,25-(OH)2D3, on the regulation of BGP mRNA levels in ROS 17/2 rat osteosarcoma cells. Elevation of intracellular cAMP levels by cAMP analogs or by isobutylmethylxanthine (IBMX), forskolin, or PTH, resulted in increased BGP mRNA levels and BGP secretion after 1 day of treatment. The effects of these agents were additive with 1,25-(OH)2D3 in stimulating BGP gene expression. After 4 days of treatment, pertussis toxin (PT) and 1,25-(OH)2D3 were synergistic in stimulating BGP mRNA, and the effect of PT could be mimicked by (Bu)2cAMP, IBMX, forskolin, cholera toxin, and to a lesser extent by PTH. The effect of 1-day treatment with cAMP alone and the synergistic effect with 1,25-(OH)2D3 on the stimulation of BGP mRNA were dependent on cell density, while basal and 1,25-(OH)2D3-stimulated synthesis were not. Cyclic AMP inhibited ROS 17/2 cell growth after 1 day of treatment, an effect that was also dependent on initial cell density. After 4 days of treatment, 1,25-(OH)2D3, cAMP, and PT all demonstrated inhibition of cell growth. When cells were treated with actinomycin D, both 1,25-(OH)2D3 and cAMP stimulation of BGP mRNA were blocked. In addition, neither agent was effective in enhancing BGP mRNA stability when prestimulated cells were exposed to actinomycin D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract Indomethacin was examined for its capacity to inhibit increases in adenosine-3',5'-monophosphate (cAMP) concentrations in Chinese hamster ovary (CHO) cells treated with cholera toxin. When added to the culture medium 1 h prior to cholera toxin (100 ng/ml), indomethacin (500 μg/ml) exhibited maximum protection against the typical increase in cAMP. Application of indomethacin at the same time as cholera toxin or up to 3 h after the toxin progressively decreased the drug's capacity to block further increases in cAMP. The drug appeared to block adenylate cyclase activity because addition of forskolin to drug-treated cells did not elicit a cAMP response. Binding of 125I-labeled cholera toxin to indomethacin-treated cells was also reduced by at least 50%. These data indicate that indomethacin's inhibitory effect on cAMP formation in cholera toxin-treated cells could be explained by its capacity to alter adenylate cyclase activity and cholera toxin binding.  相似文献   

15.
Addition of IL-1 (interleukin-1) to human synovial fibroblasts radiolabelled with [3H]arachidonic acid caused a linear dose-dependent increase in arachidonic acid release and a transient rise in labelled diacylglycerol. Protein kinase C activators PMA 4-phorbol 12-myristate 13-acetate and DiC8 (1,2-dioctanoyl-sn-glycerol) also increased arachidonic acid release, but the time course observed with PMA was different from that of IL-1. When cultures were treated with PMA for 16-24 h to down regulate protein kinase C, the ability of IL-1 to increase arachidonic acid release persisted to the same extent as in nontreated cultures. In contrast, PMA pretreatment prevented the eight-fold stimulation of arachidonic acid release in response to PMA observed in cultures not previously exposed to PMA. To examine the role of other kinases in IL-1 stimulated arachidonic acid release, cultures were treated with H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine dichloride), H-8 (N-[2-(methylamino) ethyl]-5-isoquinolinesulphonamide dichloride), HA1004 (N-(2-guanidoinoethyl)-5-isoquinolinesulphonamide hydrochloride), and staurosporine. IL-1 stimulation of arachidonic acid release was blocked by H-7, H-8 and staurosporine. H-7 was a more potent inhibitor than H-8, suggesting that cAMP dependent kinase did not mediate IL-1 action. Addition of H-7 at various times following IL-1 decreased IL-1 stimulated arachidonic acid release, suggesting that continued protein kinase activity was necessary for IL-1 action. Cycloheximide and actinomycin D inhibited the stimulation of arachidonic acid release by IL-1, PMA or DiC8. The addition of cycloheximide or actinomycin D 15-45 min after IL-1 also inhibited IL-1 stimulated arachidonic acid release, indicating that continued protein synthesis was required for IL-1 action. These results suggest that IL-1 stimulation of acylhydrolyase activity in human synovial cells occurs by a mechanism requiring continued protein synthesis and protein kinase activity and that neither protein kinase C nor cAMP dependent protein kinase is involved.  相似文献   

16.
Prostaglandin E2 promotes IL-4-induced IgE and IgG1 synthesis   总被引:3,自引:0,他引:3  
PG of the E series are generally known to suppress immune responses, however, we have found that PGE synergizes with IL-4 to induce IgE and IgG1 production in LPS-stimulated murine B lymphocytes. PGE2 and PGE1 (10(-6) to 10(-8) M) significantly increase IgE and IgG1 production (up to 26-fold) at all concentrations of IL-4 tested. In addition to its effects on IgE and IgG1, PGE also causes a significant decrease in IgM and IgG3 synthesis, suggesting that PGE may promote IL-4-induced class switching. The specificity of the E series PG effect is demonstrated by the fact that PGF2 alpha (10(-6) M) does not alter production of any of these isotypes. Because PGE can mediate its effects through cAMP in some cases, we investigated the importance of cAMP levels in regulation of isotype expression. Other agents that increase intracellular cAMP levels (cholera toxin and dibutyryl cAMP) were assessed for their ability to regulate isotype differentiation. Cholera toxin (100 pg/ml) and dibutyryl cAMP (100 microM) significantly enhanced IgE and IgG1 production and diminished IgM and IgG3 synthesis. We also show that PGE and cholera toxin elevate intracellular cAMP in B lymphocytes in a dose-dependent manner. In contrast, PGF2 alpha (10(-6) M) and the B subunit of cholera toxin (100 pg/ml) did not increase cAMP and did not regulate the isotype of Ig produced, reiterating the importance of cAMP in enhancing isotype differentiation. Although PGE is known to inhibit a number of immune responses, our data show that it is not always inhibitory. PGE may play a role in atopy in vivo where PGE-secreting cells such as macrophages, follicular dendritic cells, and fibroblasts can promote IgE synthesis. This research emphasizes the importance of PGE in regulation of the humoral immune response and adds a new stimulatory action to the repertoire of known PGE effects.  相似文献   

17.
We have utilized the adenylate cyclase stimulator, cholera toxin, as a tool to test the role of cyclic AMP as a mediator of the effects on bone resorption by the calcium-regulating hormones, parathyroid hormone (PTH) and calcitonin. The effects on bone resorption were studied in an organ culture system using calvarial bones from newborn mice. Cyclic AMP response was assayed in calvarial bone explants and isolated osteoblasts from neonatal mouse calvaria. Cholera toxin caused a dose-dependent cAMP response in calvarial bones, seen at and above approx. 1-3 ng/ml and calculated half-maximal stimulation (EC50) at 18 ng/ml. The stimulatory effect of cholera toxin could be potentiated by the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX, 0.2 mmol/l). Cyclic AMP accumulation in the bones was maximal after 4-6 h, and thereafter declined. However, activation of the adenylate cyclase was irreversible and the total amount (bone + medium) of cAMP produced, in the presence of IBMX (0.2 mmol/l), increased with time, for at least 48 h. In osteoblast-like cells cholera toxin (1 microgram/ml) stimulated the cellular levels of cAMP with a peak after 60-120 min, which could be potentiated with IBMX. The total cAMP accumulation indicated an irreversible response. In short-term bone organ cultures (at most, 24 h) cholera toxin, at and above 3 ng/ml, inhibited the stimulatory effect of PTH (10 nmol/l) on 45Ca release from prelabelled calvarial bones. The inhibitory effect of cholera toxin (0.1 microgram/ml) on 45Ca release was significant after 6 h and the calculated IC50 value at 24 h was 11.2 ng/ml. Cholera toxin (0.1 microgram/ml) also inhibited PTH-stimulated (10 nmol/l) release of Ca2+, inorganic phosphate (Pi), beta-glucuronidase, beta-N-acetylglucosaminidase and degradation of organic matrix (release of 3H from [3H]proline-labelled bones) in 24 h cultures. 45Ca release from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxyvitamin D3 (0.1 mumol/l) was also inhibited by cholera toxin (0.3 microgram/ml) in 24-h cultures. The inhibitory effect of cholera toxin on bone resorption was transient, and in long-term cultures (120 h) cholera toxin caused a dose-dependent, delayed stimulation of mineral mobilization (Ca2+, 45Ca, Pi), degradation of matrix and release of the lysosomal enzymes beta-glucuronidase and beta-N-acetylglucosaminidase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In IPC-81 cells, the adenylyl-cyclase activation by cholera toxin produces an elevation of cAMP that causes a rapid cytolysis. A resistant clone with deficient cholera toxin-induced cyclase activity (yet sensitive to cAMP) showed a rapid decrease in the amount of membrane-bound Gs alpha (42-47 kDa) detectable soon after ADP-ribosylation of these proteins; pertussis toxin-sensitive G proteins (41 kDa) were not affected. Resistant cells showed a rapid decrease of Gs alpha that is consistent with the finding that cAMP did not accumulate in these cells. Cholera toxin treatment of resistant cells had long-lasting effects (several weeks) on the level of Gs alpha in the cell membrane. The duration of Gs alpha decrease does not correspond to the probable life of catalytically active cholera toxin in the cells, and suggests a regulated process more complex than a proteolytic degradation targeted on ADP-ribosylated molecules.  相似文献   

19.
20.
The ability of isoproterenol, glucagon, PGE1 and cholera toxin to stimulate the synthesis of cAMP and protein kinase activity in line of liver cells (BRL) and a line of rat hepatoma cells (H35) has been determined. The concentration of cAMP in BRL cells (approximately 10 pmoles/mg protein) is in the range reported for other cultured cell lines but H35 cells contain extraordinarily low amounts of this cyclic nucleotide (approximately 0.05 pmoles/mg protein). Isoproterenol and PGE1 caused an increase in cAMP content, and protein kinase activation in BRL cells, although glucagon was ineffective. H35 cells, in contrast, were completely insensitive to all hormonal agonists. Despite this fact, cholera toxin was able to produce a marked increase in cAMP content, adenylate cyclase activity and protein kinase activation in H35 cells. binding studies with [125 I]-iodohydroxybenzylpindolol, a specific beta-adrenergic receptor antagonist, revealed that each H35 cell possesses fewer than 10 beta-adrenergic receptors whereas BRL cells contain 2-5,000 receptors per cell. The low level of cAMP in H35 cells appears to result from a combination of totally unstimulated adenylate cyclase and apparently elevated phosphodiesterase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号