首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The expression of two different aa3-type cytochrome oxidases is demonstrated in Bacillus subtilis. One of them (denoted caa3-605), was predicted by DNA-sequencing of Bacillus cytochrome oxidase genes, but has not been found previously. It contains covalently bound haem C in subunit II and is very similar to the enzyme previously described in the thermophilic bacterium PS3. The other oxidase (denoted aa3-600) deviates from most known oxidases of aa3 type, and is probably identical with the oxidase described by de Vrij et al. [de Vrij, W., Azzi, A. & Konings, W. N. (1983) Eur. J. Biochem. 131, 97-103]. It shows no immunological cross-reactivity to the PS3 enzyme and differs from this spectroscopically; it contains no CuA and does not oxidise cytochrome c despite of its haem-A chromophores. It catalyses oxidation of quinols, which is proposed to be its physiological function.  相似文献   

2.
The cytochrome aa3-type terminal quinol oxidase of Bacillus subtilis catalyzes the four-electron reduction of dioxygen to water. It resembles the aa3-type cytochrome-c oxidase in using heme A as its active-site chromophores but lacks the CuA center and the cytochrome-c oxidizing activity of the mitochondrial enzyme. We have used optical and resonance Raman spectroscopies to study the B. subtilis oxidase in detail. The alpha-band absorption maximum of the reduced minus oxidized enzyme is shifted by 5-7 nm to the blue relative to most other aa3-type oxidases, and accordingly, we designate the Bacillus enzyme as cytochrome aa3-600. The shifted optical spectrum cannot be ascribed to an alteration in the strength of the hydrogen bond between the formyl group of the low-spin heme and its environment, as the Raman line assigned to this mode in aa3-600 has the same frequency and degree of resonance enhancement as the low-spin heme a formyl mode in most other aa3-type oxidases. Raman modes arise at 194 and 214 cm-1 in aa3-600, whereas a single band at about 214 cm-1 is assigned to the iron-histidine stretch for the other aa3-type oxidases. Possible explanations for the occurrence of these two modes are discussed. Comparison of formyl and vinyl modes and heme skeletal vibrational modes in different oxidation states of aa3-600 and of beef heart cytochrome-c oxidase shows a strong similarity, which suggests conservation of essential features of the heme environments in these oxidases.  相似文献   

3.
The subunit pattern and the steady-state kinetics of cytochrome-c oxidase from human heart, muscle, kidney and liver were investigated. Polyacrylamide gel electrophoresis of immunopurified cytochrome-c oxidase preparations suggest that isoforms of subunit VIa exist, which show differences in staining intensity and electrophoretic mobility. No differences in subunit pattern were observed between the other nucleus-encoded subunits of the various cytochrome-c oxidase preparations. Tissue homogenates, in which cytochrome-c oxidase was solubilised with laurylmaltoside, were directly used in the assays to study the cytochrome-c oxidase steady-state kinetics. Cytochrome-c oxidase concentrations were determined by immunopurification followed by separation and densitometric analysis of subunit IV. When studied in a medium of low ionic strength, the biphasic kinetics of the steady-state reaction between human ferrocytochrome c and the four human cytochrome-c oxidase preparations revealed large differences for the low-affinity TNmax (maximal turnover number) value, ranging from 77 s-1 for kidney to 273 s-1 for liver cytochrome-c oxidase at pH 7.4, I = 18 mM. It is proposed that the low-affinity kinetic phase reflects an internal electron-transfer step. For the steady-state reaction of human heart cytochrome-c oxidase with human cytochrome c, Km and TNmax values of 9 microM and 114 s-1 were found, respectively, at high ionic strength (I = 200 mM, pH 7.4). Only minor differences were observed in the steady-state activity of the various human cytochrome-c oxidases. The interaction between human cytochrome-c oxidase and human cytochrome-c proved to be highly specific. At high ionic strength, a large decrease in steady-state activity was observed when reduced horse, rat or bovine cytochrome c was used as substrate. Both the steady-state TNmax and Km parameters were strongly affected by the type of cytochrome c used. Our findings emphasize the importance of using human cytochrome c in kinetic assays performed with tissues from patients with a suspected cytochrome-c oxidase deficiency.  相似文献   

4.
Genetic manipulation of the aa(3)-type cytochrome c oxidase of Rhodobacter sphaeroides was used to determine the minimal structural subunit associations required for the assembly of the heme A and copper centers of subunit I. In the absence of the genes for subunits II and III, expression of the gene for subunit I in Rb. sphaeroides allowed purification of a form of free subunit I (subunit I(a)()) that contained a single heme A. No copper was present in this protein, indicating that the heme a(3)-Cu(B) active site was not assembled. In cells expressing the genes for subunits I and II, but not subunit III, two oxidase forms were synthesized that were copurified by histidine affinity chromatography and separated by anion-exchange chromatography. One form was a highly active subunit I-II oxidase containing a full complement of structurally normal metal centers. This shows that association of subunit II with subunit I is required for stable formation of the active site in subunit I. In contrast, subunit III is not required for the formation of any of the metal centers or for the production of an oxidase with wild-type activity. The second product of the cells lacking subunit III was a large amount of a free form of subunit I that appeared identical to subunit I(a)(). Since significant amounts of subunit I(a)() were also isolated from wild-type cells, it is likely that subunit I(a)() will be present in any preparation of the aa(3)-type oxidase isolated via an affinity tag on subunit I.  相似文献   

5.
Bacillus subtilis contains two aa3-type terminal oxidases (caa3-605 and aa3-600) catalyzing cytochrome c and quinol oxidation, respectively, with the concomitant reduction of O2 to H2O (Lauraeus, M., Haltia, T., Saraste, M., and Wikstr?m, M. (1991) Eur. J. Biochem. 197, 699-705). Previous studies characterized only the structural genes of caa3-605 oxidase. We isolated the genes coding for the four subunits of a B. subtilis terminal oxidase from a genomic DNA library. These genes, named qoxA to qoxD, are organized in an operon. Examination of the deduced amino acid sequence of Qox subunits showed that this oxidase is structurally related to the large family of mitochondrial-type aa3 terminal oxidases. In particular, the amino acid sequences are very similar to those of subunits of Escherichia coli bo quinol oxidase and B. subtilis caa3-605 cytochrome c oxidase. We produced, by in vitro mutagenesis, a mutation in the qox operon. From the phenotype of the mutant strain devoid of Qox protein, the study of expression of the qox operon in different growth conditions, and the analysis of the deduced amino acid sequence of the subunits, we concluded that Qox protein and aa3-600 quinol oxidase are the same protein. Although several terminal oxidases are found in B. subtilis, Qox oxidase (aa3-600) is predominant during the vegetative growth and its absence leads to important alterations of the phenotype of B. subtilis.  相似文献   

6.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

7.
Eucaryotic cells contain at least two general classes of oxygen-regulated nuclear genes: aerobic genes and hypoxic genes. Hypoxic genes are induced upon exposure to anoxia while aerobic genes are down-regulated. Recently, it has been reported that induction of some hypoxic nuclear genes in mammals and yeast requires mitochondrial respiration and that cytochrome-c oxidase functions as an oxygen sensor during this process. In this study, we have examined the role of the mitochondrion and cytochrome-c oxidase in the expression of yeast aerobic nuclear COX genes. We have found that the down-regulation of these genes in anoxic cells is reflected in reduced levels of their subunit polypeptides and that cytochrome-c oxidase subunits I, II, III, Vb, VI, VII, and VIIa are present in promitochondria from anoxic cells. By using nuclear cox mutants and mitochondrial rho(0) and mit(-) mutants, we have found that neither respiration nor cytochrome-c oxidase is required for the down-regulation of these genes in cells exposed to anoxia but that a mitochondrial genome is required for their full expression under both normoxic and anoxic conditions. This requirement for a mitochondrial genome is unrelated to the presence or absence of a functional holocytochrome-c oxidase. We have also found that the down-regulation of these genes in cells exposed to anoxia and the down-regulation that results from the absence of a mitochondrial genome are independent of one another. These findings indicate that the mitochondrial genome, acting independently of respiration and oxidative phosphorylation, affects the expression of the aerobic nuclear COX genes and suggest the existence of a signaling pathway from the mitochondrial genome to the nucleus.  相似文献   

8.
We constructed expression plasmids containing cbaAB, the structural genes for the two-subunit cytochrome bo(3)-type cytochrome c oxidase (SoxB type) recently isolated from a Gram-positive thermophile Bacillus stearothermophilus. B. stearothermophilus cells transformed with the plasmids over-expressed an enzymatically active bo(3)-type cytochrome c oxidase protein composed of the two subunits, while the transformed Escherichia coli cells produced an inactive protein composed of subunit I without subunit II. The oxidase over-expressed in B. stearothermophilus was solubilized and purified. The oxidase contained protoheme IX and heme O, as the main low-spin heme and the high-spin heme, respectively. Analysis of the substrate specificity indicated that the high-affinity site is very specific for cytochrome c-551, a cytochrome c that is a membrane-bound lipoprotein of thermophilic Bacillus. The purified enzyme reconstituted into liposomal vesicles with cytochrome c-551 showed H(+) pumping activity, although the efficiency was lower than those of cytochrome aa(3)-type oxidases belonging to the SoxM-type.  相似文献   

9.
The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba(3)-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A. Here, we describe the presence in this enzyme of an additional transmembrane helix "subunit IIa", which is composed of 41 amino acid residues with a measured molecular mass of 5105 Da. Moreover, we show that subunit II, as expected, is in fact longer than the originally annotated protein (from the genome) and contains a transmembrane domain. Using Aquifex aeolicus genomic sequence analyses, N-terminal sequencing, peptide mass fingerprinting and mass spectrometry analysis on entire subunits, we conclude that the B-type enzyme from this bacterium is a three-subunit complex. It is composed of subunit I (encoded by coxA(2)) of 59000 Da, subunit II (encoded by coxB(2)) of 16700 Da and subunit IIa which contain 12, 1 and 1 transmembrane helices respectively. A structural model indicates that the structural organization of the complex strongly resembles that of the ba(3) cytochrome c oxidase from the bacterium Thermus thermophilus, the IIa helical subunit being structurally the lacking N-terminal transmembrane helix of subunit II present in the A-type oxidases. Analysis of the genomic context of genes encoding oxidases indicates that this third subunit is present in many of the bacterial oxidases from B-family, enzymes that have been described as two-subunit complexes.  相似文献   

10.
Bacillus stearothermophilus IAM11001 produced three beta-galactosidases, beta-galactosidase I, II, and III (beta-gal I, II, and III), which are detectable by polyacrylamide (nondenatured) gel electrophoresis. By connecting restriction fragments of the chromosomal DNA to plasmid vectors, followed by transformation of Escherichia coli, two beta-galactosidase genes (bgaA and bgaB) located close to each other on the chromosome were isolated. Identification of the gene products and Southern hybridization analyses with a 2.7-kilobase-pair EcoRI fragment containing the bgaA gene as probe revealed that a single bgaA gene exists on the genome and that beta-gal II and beta-gal III consist of a common subunit (the bgaA gene product; molecular weight, 120,000), but differ in their assembly (beta-gal II is a dimer, and beta-gal III is a tetramer). The bgaB gene product (molecular weight, 70,000) in Bacillus subtilis harboring pHG5 (a hybrid plasmid consisting of pUB110 and a 2.9-kilobase-pair EcoRI fragment) was estimated to be the beta-gal I protein from its heat stability. Southern hybridization and immunological testing indicated that the two genes have no homology.  相似文献   

11.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

12.
The ctaBCDEF genes coding for cytochrome c oxidase were found to reside adjacent to a regulatory gene ctaA at 127 degrees on the Bacillus subtilis chromosome. The structural genes for subunits I and II, ctaD and ctaC, were deleted by gene-replacement using a phleomycin-resistance marker. The mutant was unable to oxidize N,N,N',N'-tetramethyl-p-phenylene-diamine and oxidized cytochrome c at a significantly lower rate. Absorption spectra of the mutant and wild-type membranes confirmed the presence of two haem A-containing enzymes in B. subtilis. Another mutant, with a spontaneous deletion upstream from ctaC, was found to express neither of these enzymes. Radioactive haem-labelling was used to identify subunit II, which contains a haem C, and cytochrome c-550 among the membrane-bound c-type cytochromes of B. subtilis.  相似文献   

13.
Cytochrome-c oxidase is the copper-dependent terminal respiratory complex (complex IV) of the mitochondrial electron transport chain whose activity in a variety of tissues is lowered by copper deficiency. Because inhibition of respiratory complexes increases the production of reactive oxygen species by mitochondria, it is possible that copper deficiency increases oxidative stress in mitochondria as a consequence of suppressed cytochrome-c oxidase activity. In this study, the activities of respiratory complex I + III, assayed as NADH:cytochrome-c reductase, complex II + III, assayed as succinate:cytochrome-c reductase, complex IV, assayed as cytochrome-c oxidase, and fumarase were measured in mitochondria from HL-60 cells that were grown for seven passages in serum-free medium that was either unsupplemented or supplemented with 50 n M CuSO4. Fumarase activity was not affected by copper supplementation, but the complex I + III:fumarase and complex IV:fumarase ratios were reduced 30% and 50%, respectively, in mitochondria from cells grown in the absence of supplemental copper. This indicates that copper deprivation suppressed the electron transfer activity of copper-independent complex I + III as well as copper-dependent complex IV. Manganese superoxide dismutase (MnSOD) content was also increased 49% overall in the cells grown in the absence of supplemental copper. Furthermore, protein carbonyl groups, indicative of oxidative modification, were present in 100-kDa and 90-kDa proteins of mitochondria from copper-deprived cells. These findings indicate that in cells grown under conditions of copper deprivation that suppress cytochrome-c oxidase activity, oxidative stress in mitochondria is increased sufficiently to induce MnSOD, potentiate protein oxidation, and possibly cause the oxidative inactivation of complex I.  相似文献   

14.
The amino-acid sequence of bovine heart cytochrome-c oxidase subunit I, previously deduced from mtDNA was corroborated by proteinchemical methods. The protein consists of 514 amino acids, the Mr is 57,060 including the N-terminal formyl group, which is positively identified. The study describes methods for the purification of the hydrophobic polypeptide by BioGel-chromatography in 3% SDS and/or HPLC and the sequence analysis via complete peptide maps obtained either by chymotryptic or cyanogenbromide cleavage in the presence of residual amounts of SDS. The methods may be used either for a stand alone sequencing of large integral membrane proteins or for obtaining probes to find the gene and provide the necessary complement for DNA sequencing. The results present the only protein-derived evidence for a family of about 20 DNA-deduced sequences of the catalytic subunit of cytochrome oxidases from bacteria to man.  相似文献   

15.
Bovine heart cytochrome-c oxidase was reconstituted in liposomes and modified with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). EEDQ reacted mainly with subunits II and III and to a lower extent with subunit I, as shown by difference labeling with [14C]dicyclohexylcarbodiimide. EEDQ treatment of cytochrome-c oxidase vesicles influenced ferrocytochrome c-induced proton pumping by reducing maximally the H+/e- stoichiometry from 0.84 (control) to 0.24, but had only small effects on respiration, respiratory control ratio, and proton conductivity of the proteoliposomes. By titrating the reaction rate of the control and the modified cytochrome-c oxidase vesicles versus the membrane potential, as measured with a Ph3MeP+ electrode, saturation curves are obtained, which in both cases approach 225 mV. The ratios of electron transport rates of the two proton pumps at various membrane potentials decrease between 160 and 225 mV from about 2.2 to 1, indicating that the nonlinear flow/force relationship of these proton pumps is at least partly due to "slippage" of proton pumping.  相似文献   

16.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

17.
A segment of mitochondrial DNA encoding the bovine cytochrome c oxidase subunit III gene was isolated and inserted into an Escherichia coli plasmid vector. A 556 base pair fragment of the insert DNA representing about 70% of the 3'-end of the subunit III gene was used to search for homology with bacterial DNA from strains that contain heme aa3-type cytochrome c oxidases. Bacillus subtilis, Thermus thermophilus, and PS3 DNAs all showed strong hybridization to the probe, whereas Paracoccus denitrificans and Rhodopseudomonas sphaeroides DNAs showed only weak hybridization to the probe, even under low stringency conditions.  相似文献   

18.
Proton pumping heme-copper oxidases represent the terminal, energy-transfer enzymes of respiratory chains in prokaryotes and eukaryotes. The CuB-heme a3 (or heme o) binuclear center, associated with the largest subunit I of cytochrome c and quinol oxidases, is directly involved in the coupling between dioxygen reduction and proton pumping. The role of the other subunits is less clear. The following aspects will be covered in this paper:i) the efficiency of coupling in the mitochondrial aa3 cytochrome c oxidase. In particular, the effect of respiratory rate and protonmotive force on the H+/e? stoichiometry and the role of subunit IV; ii) mutational analysis of the aa3 quinol oxidase of Bacillus subtilis addressed to the role of subunit III, subunit IV and specific residues in subunit I; iii) possible models of the protonmotive catalytic cycle at the binuclear center. The observations available suggest that H+/e?coupling is based on the combination of protonmotive redox catalysis at the binuclear center and co-operative proton transfer in the protein.  相似文献   

19.
Human cytochrome c oxidase was isolated in an active form from heart and from skeletal muscle by a fast, small-scale isolation method. The procedure involves differential solubilisation of the oxidase from mitochondrial fragments by laurylmaltoside and KCl, followed by size-exclusion high-performance liquid chromatography. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate showed differences between the subunit VI region of cytochrome c oxidases from human heart and skeletal muscle, suggesting different isoenzyme forms in the two organs. This finding might be of importance in explaining mitochondrial myopathy which shows a deficiency of cytochrome c oxidase in skeletal muscle only. In SDS polyacrylamide gel electrophoresis most human cytochrome c oxidase subunits migrated differently from their bovine counterparts. However, the position of subunits III and IV was the same in the human and in the bovine enzymes. The much higher mobility of human cytochrome c oxidase subunit II is explained by a greater hydrophobicity of this polypeptide than of that of the subunit II of the bovine enzyme.  相似文献   

20.
M Denis 《Biochimie》1986,68(3):459-470
Recent works on the structure and the function of cytochrome-c oxidase are reviewed. The subunit composition of the mitochondrial enzyme depends on the species and is comprised of between 5 and 13 subunits. It is reduced to 1 to 3 subunits in prokaryotes. The complete amino acid composition has been derived from protein sequencing. Gene sequences are partially known in several eukaryote species. Metal centers are only located in subunits I and II. The mitochondrial cytochrome-c oxidase is Y-shaped; the arms of the Y cross the inner membrane, the stalk protrudes into the intermembrane space. The bacterial enzyme has a simpler, elongated shape. A number of data have been accumulated on the subunit topology and on their location within the protein. All available spectrometric techniques have been used to investigate the environment of the metal centers as well as their interactions. From the literature, attention must be paid to what may be considered or not as an active form. The steady improvement of the instrumentation has yielded evidence for different kinds of heterogeneities which could reflect the in vivo situation. The 'pulsed' and 'resting' conformers have been well characterized. The 'oxygenated' form has been identified as a peroxide derivative of the fully oxidized cytochrome-c oxidase. The mammalian enzyme has been isolated in fully active monomeric form which does not preclude the initially suggested dimeric behavior in situ. The role of the lipids is still largely investigated, mainly through reconstitution experiments. Kinetic studies of electron transfer between cytochrome c and cytochrome-c oxidase lead to a single catalytic site model to account for the multiphasic kinetics. Results related to the low temperature investigation of the intermediate steps in the reaction between oxygen and cytochrome-c oxidase received a sound confirmation by the resolution of compound A at room temperature. It is also pointed out that the so-called mixed valence state might not be a transient state in the catalytic reduction of oxygen. The functioning of cytochrome-c oxidase as a proton pump has been supported by a number of experimental results. Subunit III would be involved in this process. The redox link to the proton pump has been suggested to be at the Fea-CuA site. The molecular mechanism responsible for the proton pumping is still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号