共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic test of the role of the maternal pronucleus in Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster
下载免费PDF全文

Cytoplasmic incompatibility (CI) is a reproductive sterility found in arthropods that is caused by the endoparasitic bacteria Wolbachia. In CI, host progeny fail to develop during early embryogenesis if Wolbachia-infected males fertilize uninfected females. It is widely accepted that this lethality is caused by some unknown Wolbachia-induced modification of the paternal nuclear material in the host testes. However, the direct means by which this modification leads to early embryonic death are currently unresolved. Results from previous studies suggested that CI lethality occurs as a result of asynchrony in cell cycle timing between the paternal and maternal pronuclei. This hypothesis can be tested experimentally by the prediction that the Wolbachia-modified paternal pronucleus should support androgenetic development (i.e., from the paternal pronucleus only). Using specific mutations in Drosophila melanogaster that produce androgenetic progeny, we demonstrate that the Wolbachia-induced modification inhibits this type of development. This result suggests that CI occurs independently of the maternal pronucleus and argues against pronuclear asynchrony as the primary cause of CI lethality. We propose that CI occurs instead as the result of either a developmentally incompetent paternal pronucleus or asynchrony between the paternal pronucleus and the cell cycle of the egg cytoplasm. 相似文献
2.
Background
In California Drosophila simulans, the maternally inherited Riverside strain Wolbachia infection (wRi) provides a paradigm for rapid spread of Wolbachia in nature and rapid evolutionary change. wRi induces cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females produce reduced egg-hatch. The three parameters governing wRi infection-frequency dynamics quantify: the fidelity of maternal transmission, the level of cytoplasmic incompatibility, and the relative fecundity of infected females. We last estimated these parameters in nature in 1993. Here we provide new estimates, under both field and laboratory conditions. Five years ago, we found that wRi had apparently evolved over 15 years to enhance the fecundity of infected females; here we examine whether CI intensity has also evolved.Methodology/Principal Findings
New estimates using wild-caught flies indicate that the three key parameters have remained relatively stable since the early 1990s. As predicted by our three-parameter model using field-estimated parameter values, population infection frequencies remain about 93%. Despite this relative stability, laboratory data based on reciprocal crosses and introgression suggest that wRi may have evolved to produce less intense CI (i.e., higher egg hatch from incompatible crosses). In contrast, we find no evidence that D. simulans has evolved to lower the susceptibility of uninfected females to CI.Conclusions/Significance
Evolution of wRi that reduces CI is consistent with counterintuitive theoretical predictions that within-population selection on CI-causing Wolbachia does not act to increase CI. Within taxa, CI is likely to evolve mainly via pleiotropic effects associated with the primary targets of selection on Wolbachia, i.e., host fecundity and transmission fidelity. Despite continuous, strong selection, D. simulans has not evolved appreciably to suppress CI. Our data demonstrate a lack of standing genetic variation for CI resistance in the host. 相似文献3.
Wolbachia pipientis is an obligate bacterial endosymbiont, which has successfully invaded approximately 20% of all insect species by manipulating their normal developmental patterns. Wolbachia-induced phenotypes include parthenogenesis, male killing, and, most notably, cytoplasmic incompatibility. In the future these phenotypes might be useful in controlling or modifying insect populations but this will depend on our understanding of the basic molecular processes underlying insect fertilization and development. Wolbachia-infected Drosophila simulans express high levels of cytoplasmic incompatibility in which the sperm nucleus is modified and does not form a normal male pronucleus when fertilizing eggs from uninfected females. The sperm modification is somehow rescued in eggs infected with the same strain of Wolbachia. Thus, D. simulans has become an excellent model organism for investigating the manner in which endosymbionts can alter reproductive programs in insect hosts. This paper reviews the current knowledge of Drosophila early development and particularly sperm function. Developmental mutations in Drosophila that are known to affect sperm function will also be discussed.incompatibility. 相似文献
4.
Background
Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI). CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown.Methodology/Principal Findings
Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI.Conclusions/Significance
Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role Hira plays in the interaction of Wolbachia and its insect host. 相似文献5.
Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster 总被引:1,自引:0,他引:1
Cytoplasmic incompatibility (CI) is the most widespread reproductive modification induced in insects by the maternally inherited intracellular bacteria, Wolbachia. Expression of CI in Drosophila melanogaster is quite variable. Published papers typically show that CI expression is weak and often varies between different Drosophila lines and different labs reporting the results. The basis for this variability is not well understood but is often considered to be due to unspecified host genotype interactions with Wolbachia. Here, we show that male development time can greatly influence CI expression in D. melanogaster. In a given family, males that develop fastest express very strong CI. The "younger brothers" of these males (males that take longer to undergo larval development) quickly lose their ability to express the CI phenotype as a function of development time. This effect is independent of male age effects and is enhanced when flies are reared under crowded conditions. No correlation is seen between this effect and Wolbachia densities in testes, suggesting that a more subtle interaction between host and symbiont is responsible. The observed younger brother effect may explain much of the reported variability in CI expression in this species. When male development time is controlled, it is possible to obtain consistently high levels of CI expression, which will benefit future studies that wish to use D. melanogaster as a model host to unravel CI mechanisms. 相似文献
6.
Wolbachia are intracellular bacteria transmitted almost exclusively vertically through eggs. In response to this mode of transmission, Wolbachia strategically manipulate their insect hosts' reproduction. In the most common manipulation type, cytoplasmic incompatibility, infected males can only mate with infected females, but infected females can mate with all males. The mechanism of cytoplasmic incompatibility is unknown; theoretical and empirical findings need to converge to broaden our understanding of this phenomenon. For this purpose, two prominent models have been proposed: the mistiming-model and the lock-key-model. The former states that Wolbachia manipulate sperm of infected males to induce a fatal delay of the male pronucleus during the first embryonic division, but that the bacteria can compensate the delay by slowing down mitosis in fertilized eggs. The latter states that Wolbachia deposit damaging "locks" on sperm DNA of infected males, but can also provide matching "keys" in infected eggs to undo the damage. The lock-key-model, however, needs to assume a large number of locks and keys to explain all existing incompatibility patterns. The mistiming-model requires fewer assumptions but has been contradicted by empirical results. We therefore expand the mistiming-model by one quantitative dimension to create the new, so-called goalkeeper-model. Using a method based on formal logic, we show that both lock-key- and goalkeeper-model are consistent with existing data. Compared to the lock-key-model, however, the goalkeeper-model assumes only two factors and provides an idea of the evolutionary emergence of cytoplasmic incompatibility. Available cytological evidence suggests that the hypothesized second factor of the goalkeeper-model may indeed exist. Finally, we suggest empirical tests that would allow to distinguish between the models. Generalizing our results might prove interesting for the study of the mechanism and evolution of other host-parasite interactions. 相似文献
7.
Poinsot D Charlat S Merçot H 《BioEssays : news and reviews in molecular, cellular and developmental biology》2003,25(3):259-265
The endocellular bacterium Wolbachia manipulates the reproduction of its arthropod hosts for its own benefit by various means, the most widespread being cytoplasmic incompatibility (CI). To date, the molecular mechanism involved in CI has not been elucidated. We examine here three different CI models described in previous literature, namely, the "lock-and-key", "titration-restitution" and "slow-motion" models. We confront them with the full range of CI patterns discovered so far, including the most complex ones such as multiple infections, asymmetrical and partial compatibility relationships and the existence of Wolbachia variants that can rescue the host from CI but not induce it. We conclude that the lock-and-key model is the most parsimonious of the models and fits the observations best. The two other models cannot be categorically invalidated, but they encounter some difficulties that make additional hypotheses necessary. 相似文献
8.
Bacteria of the genus Wolbachia are among the most common endosymbionts in the world. In many insect species these bacteria induce a sperm-egg incompatibility between the gametes of infected males and uninfected females, commonly called unidirectional cytoplasmic incompatibility (CI). It is generally believed that unidirectional CI cannot promote speciation in hosts because infection differences between populations will be unstable and subsequent gene flow will eliminate genetic differences between diverging populations. In the present study we investigate this question theoretically in a mainland-island model with migration from mainland to island. Our analysis shows that (a) the infection polymorphism is stable below a critical migration rate, (b) an (initially) uninfected "island" can better maintain divergence at a selected locus (e.g. can adapt locally) in the presence of CI, and (c) unidirectional CI selects for premating isolation in (initially) uninfected island populations if they receive migration from a Wolbachia-infected mainland. Interestingly, premating isolation is most likely to evolve if levels of incompatibility are intermediate and if either the infection causes fecundity reductions or Wolbachia transmission is incomplete. This is because under these circumstances an infection pattern with an infected mainland and a mostly uninfected island can persist in the face of comparably high migration. We present analytical results for all three findings: (a) a lower estimation of the critical migration rate in the presence of local adaptation, (b) an analytical approximation for the gene flow reduction caused by unidirectional CI, and (c) a heuristic formula describing the invasion success of mutants at a mate preference locus. These findings generally suggest that Wolbachia-induced unidirectional CI can be a factor in divergence and speciation of hosts. 相似文献
9.
Wolbachia are intracellular, maternally inherited bacteria that are widespread among arthropods and commonly induce a reproductive incompatibility between infected male and uninfected female hosts known as unidirectional cytoplasmic incompatibility (CI). If infected and uninfected populations occur parapatrically, CI acts as a post-zygotic isolation barrier. We investigate the stability of such infection polymorphisms in a mathematical model with two populations linked by migration. We determine critical migration rates below which infected and uninfected populations can coexist. Analytical solutions of the critical migration rate are presented for mainland-island models. These serve as lower estimations for a more general model with two-way migration. The critical migration rate is positive if either Wolbachia causes a fecundity reduction in infected female hosts or its transmission is incomplete, and is highest for intermediate levels of CI. We discuss our results with respect to local adaptations of the Wolbachia host, speciation, and pest control. 相似文献
10.
Dobson SL Fox CW Jiggins FM 《Proceedings. Biological sciences / The Royal Society》2002,269(1490):437-445
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated. 相似文献
11.
Wolbachia is an intracellular microbe found in a wide diversity of arthropod and filarial nematode hosts. In arthropods these common bacteria are reproductive parasites that manipulate central elements of their host's reproduction to increase their own maternal transmission in one of several ways. Cytoplasmic incompatibility (CI) is one such manipulation where sperm are somehow modified in infected males and this modification must be rescued by the presence of the same bacterial strain in the egg for normal development to proceed. The molecular mechanisms involved in the expression of CI are unknown. Here we show that Wolbachia infection results in increased mRNA and protein expression of the Drosophila simulans nonmuscle myosin II gene zipper. Induced overexpression of zipper in Wolbachia-free transgenic D. melanogaster males results in paternal-effect lethality that mimics the fertilization defects associated with CI. Likewise, overexpression of the tumor suppressor gene, lethal giant larvae [l(2)gl], results in egg lethality and a CI phenotype. Stoichiometric levels of zipper and l(2)gl are required for proper segregation of cellular determinants during neuroblast stem cell division. Taken together these results form the basis of a working hypothesis whereby Wolbachia induces paternal effects in sperm by manipulating the expression of key regulators of cytoskeletal activity during spermatogenesis. 相似文献
12.
In Drosophila sechellia, the endocellular bacterium Wolbachia induces cytoplasmic incompatibility (CI): in crosses involving infected males, a partial or complete embryonic mortality occurs unless the female bears the same Wolbachia. D. sechellia is known to harbour two Wolbachia variants, namely wSh and wSn, closely related to wHa and wNo, respectively, two strains infecting the populations of D. simulans from the Seychelles archipelago and New Caledonia. Strikingly, the two species show similar infection patterns: in D. sechellia, wSh can be present on its own or in double infection with wSn, but individuals carrying wSn only do not occur; in D. simulans, wHa can be present on its own or in double infection with wNo, but individuals carrying wNo only do not occur, or occur at very low frequency. Previous experiments on D. simulans showed that lines singly infected by wNo can be obtained by segregation, and stably maintained. Here we investigate this issue in D. sechellia through an 18 generation experiment, and show that wSn and wSh singly infected lines can arise by segregation. Using singly infected lines obtained in this experiment, we estimate the CI intensities of wSh and wSn in D. sechellia, and compare these to the CI intensities of the same Wolbachia injected into D. simulans. Our results do not suggest any consistent effect of the host species on the CI induced by wSh. On the contrary, it seems that wSn expression is repressed by host factors in D. sechellia. 相似文献
13.
Ary A. Hoffmann 《Entomologia Experimentalis et Applicata》1988,48(1):61-67
Drosophila melanogaster (Meigen) females from stocks collected at Melbourne (latitude 37°S) show partial incompatibility when mated with males from stocks collected at Townsville (latitude 19°S) on the east coast of Australia. The reciprocal cross is compatible. Eggs have reduced hatchability in the incompatible cross. The incompatibility is maternally inherited over three generations. Compatibility can be restored by culturing Townsville flies on medium with tetracycline for one generation and by using 2-week-old Townsville males.
Incompatibilité cytoplasmique partielle entre deux populations australiennes de Drosophila melanogaster
Résumé Les souches de D. melanogaster récoltées à Melbourne (37°S) et Townsville (19°S) sur la côte Est de l'Australie montrent une incompatibilité partielle lorsque les femelles Melbourne sont accouplées aux mâles Townsville. Une telle incompatibilité n'est décelée, ni dans les croisements intrapopulations, ni dans le croisement réciproque. Le taux d'éclosion des oeufs est réduit d'environ 30% dans le croisement incompatible, mais la viabilité des larves n'est pas modifiée. Les éléments, mâle et femelle, de ce système d'incompatibilité sont hérités maternellement pendant 3 générations de croisements en retour. La compatibilité peut être intégralement rétablie en cultivant pendant une génération la souche Townsville avec un régime contenant de la tétracycline, et partiellement rétablie en utilisant des mâles âgés de 2 semaines.相似文献
14.
Field populations of Drosophila melanogaster are often infected with Wolbachia, a vertically transmitted microorganism. Under laboratory conditions the infection causes partial incompatibility in crosses between infected males and uninfected females. Here we examine factors influencing the distribution of the infection in natural populations. We show that the level of incompatibility under field conditions was much weaker than in the laboratory. The infection was not transmitted with complete fidelity under field conditions, while field males did not transmit the infection to uninfected females and Wolbachia did not influence sperm competition. There was no association between field fitness as measured by fluctuating asymmetry and the infection status of adults. Infected field females were smaller than uninfecteds in some collections from a subtropical location, but not in other collections from the same location. Laboratory cage studies showed that the infection did not change in frequency when populations were maintained at a low larval density, but it decreased in frequency at a high larval density. Monitoring of infection frequencies in natural populations indicated stable frequencies in some populations but marked fluctuations in others. Simple models suggest that the infection probably provides a fitness benefit for the host in order to persist in populations. The exact nature of this benefit remains elusive. 相似文献
15.
Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans 总被引:2,自引:0,他引:2
The effects of high temperatures, antibiotics, nutrition and larval density on cytoplasmic incompatibility caused by a Wolbachia infection were investigated in Drosophila simulans. Exposure of larvae from an infected stock to moderate doses of tetracycline led to complete incompatibility when treated females were crossed to infected males; the same doses only caused a partial restoration of compatibility when treated males were crossed to uninfected females. In crosses with treated females, there was a strong correlation between dose effects on hatch rates and infection levels in embryos produced by these females. Ageing and rearing males at a high temperature led to increased compatibility. However, exposing infected females to a high temperature did not influence their compatibility with infected males. Male temperature effects depended on conditions experienced at the larval stage but not the pupal stage. Exposure to 25 °C reduced the density of Wolbachia in embryos compared with a 19 °C treatment. Low levels of nutrition led to increased compatibility, but no effect of larval crowding was detected. These findings show the ways environmental factors can influence the expression of cytoplasmic incompatibility and suggest that environmental effects may be mediated by bacterial density. 相似文献
16.
A PCR based quantitative assay was used to determine Wolbachiainfection levels in three different Drosophila strains. In addition,confocal microscopy was used to confirm and calibrate theseresults. Wolbachia infection levels ranged from 2,600 to 18,500per egg. Single ovaries and testes from each of the three strainswere also assayed using the calibrated quantitative PCR assay.A general correlation was found between bacterial levels ineggs and those found in ovaries and testis. These infectionlevels were consistent with the expression of cytoplasmic incompatibility(CI). In two strains of D. simulans, although the overall bacterialnumbers were not significantly different, they exhibited differentlevels of CI. A direct correlation between the number of infecteddeveloping sperm cysts in these strains and CI levels was observed.This calibrated assay should provide a useful baseline for futurecomparative work, particularly between laboratories. 相似文献
17.
Wolbachia与昆虫精卵细胞质不亲和 总被引:1,自引:0,他引:1
Wolbachia是广泛分布在昆虫体内的一类共生菌,能通过多种机制调节宿主的生殖方式,包括诱导宿主精卵细胞质不亲和(CI)、孤雌生殖、雌性化、杀雄等,其中细胞质不亲和为最普遍的表型,即感染Wolbachia的雄性和未感染或感染不同品系Wolbachia的雌性宿主交配后,受精卵不能正常发育,在胚胎期死亡。多数CI胚胎在第1次分裂时,来自父本的染色质浓缩缺陷,导致父本遗传物质无法正常分配到子细胞中,因而引起胚胎死亡。守门员模型认为,产生CI可能需要有两种因子,其中之一使得精子发生修饰改变,导致受精后雄性原核发育滞后。第2种因子可能与Wolbachia的原噬菌体有关,在胚胎发育后期导致胚胎死亡。近期的研究已发现,在Wolbachia感染的宿主中,一些与生殖细胞发生和繁殖相关基因的表达发生了显著改变,Wolbachia可能因此对宿主的生殖产生重大影响,进而导致CI的产生。本文主要综述了CI的细胞学表型、解释CI的模型及其分子机理,向读者展示一个小小的细菌是如何通过精妙的策略影响昆虫宿主的繁殖,从而实现其自身的生存和传播的。 相似文献
18.
Sinkins SP 《Insect biochemistry and molecular biology》2004,34(7):723-729
Wolbachia are maternally inherited bacteria that induce cytoplasmic incompatibility in mosquitoes, and are able to use these patterns of sterility to spread themselves through populations. For this reason they have been proposed as a gene drive system for mosquito genetic replacement, as well as for the reduction of population size or for modulating population age structure in order to reduce disease transmission. Here, recent progress in the study of mosquito Wolbachia is reviewed. We now have much more comprehensive estimates of the parameters that can affect the spread of Wolbachia through natural populations from low starting frequencies, and for waves of spread to be maintained in the face of partial barriers to gene flow. In Aedes albopictus these dynamics are extremely favourable, with very high maternal transmission fidelity and levels of incompatibility recorded. Correspondence between measurements taken in the lab and field is much better than in the Drosophila simulans model system. Important research goals are also discussed, including Wolbachia transformation, interspecific transfer and the elucidation of the mechanisms of incompatibility and rescue; all will be aided by a wealth of new Wolbachia genome information. 相似文献
19.
Vegetative incompatibility and cytoplasmic infection in fungi 总被引:12,自引:0,他引:12
C E Caten 《Journal of general microbiology》1972,72(2):221-229
20.
Most cases of Wolbachia infection so far documented in haplodiploid Hymenoptera are associated with parthenogenesis induction. Only three examples of Wolbachia-mediated cytoplasmic incompatibility (CI) have been reported, resulting either in haploidisation of fertilised eggs, which develop into viable males, or in their death. To better document this variability, we studied two new Wolbachia-wasp associations involving Drosophila parasitoids. In Trichopria cf. drosophilae, individuals are infected by two different Wolbachia variants, populations are nearly totally infected, and Wolbachia induces incomplete CI resulting in death of the fertilised eggs. On the other hand, Pachycrepoideus dubius harbours only one bacterial variant, populations are polymorphic for infection, and Wolbachia has no detectable effect. These two cases show that the range of variation in Wolbachia's effects in Hymenoptera is as wide as in diploids, extending from complete CI to an undetectable effect. Cases so far studied show some parallel between the strength of incompatibility, the number of Wolbachia variants infecting each wasp, and the natural infection frequency. These empirical data support theoretical models predicting evolution of CI towards lower levels, resulting in the decline and ultimate loss of infection, and place multiple infections as being an important factor in the evolution of host-Wolbachia associations. 相似文献