首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the first component of human complement (C1) by bilayer-embedded nitroxide spin label lipid haptens and specific rabbit antinitroxide antibody has been measured. The nitroxide spin label hapten was contained in host bilayers of either dimyristoyl phosphatidylcholine or dipalmitoyl phosphatidylcholine in the form of both liposomes and vesicles. At a temperature of 32 degrees C, which is intermediate between the hydrocarbon chain-melting temperatures of the two phospholipids, activation of C1 in such vesicles and liposomes is more efficient in the fluid membrane. Studies of C1 activation in binary mixtures of cholesterol and dipalmitoyl phosphatidylcholine indicate that the activation of C1 is not limited by the lateral diffusion of the lipid haptens in these membranes.  相似文献   

2.
We have obtained equilibrium and rate constants for the interaction of monoclonal IgG and its monovalent Fab fragment with a hapten (fluorescein) attached to the surface of a liposome. Binding was detected at nanomolar hapten concentrations by the quenching of the hapten's fluorescence on antibody binding. The binding parameters were computed from nonlinear least squares fits, using mass-action models. Crypticity of the hapten was observed and interpreted as an equilibrium between two states, extended and sequestered, the latter representing haptens associated with the membrane surface. Depending on the lipid composition of the liposomes, the fraction of sequestered hapten ranged from 0.25 to 0.975; transitions between the two states took place on the time scale of minutes. Fab interactions with extended hapten on the membrane were similar to interactions with water-soluble hapten. The ability of IgG to bind bivalently to membrane gave it an avidity two to six times the affinity for purely monovalent binding. However, the equilibrium constant for the monovalent-bivalent binding equilibrium was effectively four to five orders of magnitude less than that for the initial binding step. This probably reflects steric penalties for the simultaneous binding of two haptens on a membrane.  相似文献   

3.
The relation between the immune-reaction of phosphatidylcholine liposomes containing spin-labeled galactosyl ceramide with or without cholesterol and the topographical distribution of the glycolipid in membranes was studied. In egg yolk phosphatidylcholine liposomes, both immune agglutination and antibody binding occurred, irrespectively of the presence of cholesterol, though the motion of the fatty acyl chain of spin-labeled galactosyl ceramide was restricted by cholesterol. In dipalmitoyl phosphatidylcholine liposomes, unlike in egg yolk phosphatidylcholine liposomes, the immune-reaction depended on the cholesterol content. The electron spin resonance (ESR) spectra of spin-labeled galactosyl ceramide in dipalmitoyl phosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled galactosyl ceramide in the liposomes. Without cholesterol, most of the spin-labeled galactosyl ceramide was clustered on the dipalmitoyl phosphatidylcholine membrane, but with increase of cholesterol, random distribution of hapten on the membrane increased. The cholesterol-dependent change in the topographical distribution of hapten on the membranes was parallel with that of immune reactivity. 'Aggregates' composed solely of galactosyl ceramide did not show any binding activity with antibody. The findings suggest that the recognition of galactosyl ceramide by antibody depended on the topographical distribution of hapten molecules. Phosphatidylcholine and/or cholesterol may play roles as 'spacers' for the proper distribution of 'active' haptens on the membranes. The optimum density of haptens properly distributed on liposomal membranes is discussed.  相似文献   

4.
We have studied the binding of liposomes containing dinitrophenylated lipid to rat basophil leukemia cells armed with monoclonal anti-dinitrophenyl IgE. The liposomes were either "fluid" at 37 degrees C (dimyristoylphosphatidylcholine or an equimolar binary mixture dipalmitoylphosphatidylcholine and cholesterol) or "solid" (dipalmitoylphosphatidylcholine, distearoylphosphatidylcholine, or dibehanoylphosphatidylcholine). We have also studied the immune mediated degranulation of these cells induced by the above lipid membrane targets. In some cases both studies were carried out with liposomes containing various surface densities of lipid haptens. From these studies we conclude that freely mobile nonaggregated lipid haptens in bilayer membrane targets can trigger efficient serotonin release from rat basophil leukemia cells in the presence of specific antihapten IgE. Solid target membranes are also effective as stimulators of serotonin release. The release of serotonin depends strongly on the surface density of lipid haptens over a narrow range of surface densities. These studies with lipid membrane targets having well defined physical properties indicate the need for generalized molecular models of receptor-mediated cell triggering.  相似文献   

5.
Dioleoyl phosphatidylethanolamine (DOPE) does not form stable bilayer liposomes at room temperature and neutral pH. However, stable unilamellar liposomes could be prepared by mixing DOPE with a minimum of 12% of a haptenated lipid, N-(dinitrophenylaminocaproyl)-phosphatidylethanolamine (DNP-cap-PE). When the liposomes bound to rabbit anti-DNP IgG that had been adsorbed on a glass surface, lysis of the liposome occurred with the release of the contents into the medium as judged by the fluorescence enhancement of an entrapped self-quenching dye, calcein. On the other hand, incubation of the same liposomes with glass surfaces coated with normal rabbit IgG had little effect. In addition, free anti-DNP IgG induced aggregation of the liposomes but did not cause any dye release. Liposomes composed of dioleoyl phosphatidylcholine (DOPC) and DNP-cap-PE did not lyse when added to the glass surfaces coated with either anti-DNP IgG or normal IgG. A likely mechanism for liposome lysis is that the DNP-cap-PE laterally diffuse to the contact area between the liposome and the glass. Binding of the haptenated lipid with the immobilized and multivalent antibody trap the haptenated lipids in the contact area. As a result of lateral phase separation, lipids may undergo the bilayer to hexagonal phase transition, leading to the leakage of the entrapped dye. Because both the free hapten and the free antibody inhibited the liposome leakage, this process could be used to assay for the free hapten or antibody. We have shown that inhibition assays performed by using this principle can easily detect 10 pmol of free DNP-glycine in 40 microliter. Furthermore, by substituting human glycophorin A, a transmembrane glycoprotein, for the lipid hapten, we have demonstrated that this assay system is also applicable to detect protein antigen with a sensitivity of sub-nanogram level.  相似文献   

6.
The relation between the in vitro immunogenicity of phosphatidylcholine liposomes containing 2,4-dinitrophenyl-6-N-aminocaproylphosphatidylethanolamine (DNP-Cap-PE) as a hapten and the topographical distribution of the haptens on lipid membranes was studied. In distearoylphosphatidylcholine liposomes, the immunogenicity increased with increase of cholesterol content in the liposomal membranes. The electron spin resonance spectra of spin-labeled DNP-Cap-PE in distearoylphosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled DNP-Cap-PE on the membranes. In the absence of cholesterol, a considerable amount of haptens was clustered on the distearoylphosphatidylcholine membranes, but with increase of cholesterol, random distribution of the haptens on the membranes increased. The cholesterol-dependent change in the topographical distribution of the haptens on the membranes paralleled the change of immunogenicity, i.e., the immunogenicity was low when haptens were clustered on the liposomal membranes. Haptens arranged at a proper distance on the membranes may be required for optimum immune response.  相似文献   

7.
Kinetic and equilibrium aspects of the recognition of antigenic model membranes by antibodies have been studied. Monoclonal anti-fluorescein IgG and its monovalent Fab fragment were allowed to interact with a fluorescein-lipid hapten that was incorporated into phospholipid vesicles. The binding was assayed in the nanomolar hapten concentration range by monitoring the quenching of hapten fluorescence by antibody. The rate and strength of the binding depended on the lipid composition of the vesicles; cholesterol enhanced both. The biphasic binding kinetics observed at high antibody concentrations for some compositions, plus additional spectroscopic evidence, led us to hypothesize that the hapten existed in a composition-dependent equilibrium between at least two conformations: (1) extended away from the membrane surface, available for binding, and (2) sequestered at or in the surface, unavailable for binding. The rate and strength of IgG binding were always greater than those of Fab, indicating bivalent binding by the IgG. This binding was intra-vesicular, since no agglutination of the vesicles was detected.  相似文献   

8.
The antibody-dependent binding and activation of the first component of human complement (C1) by liposomes containing nitroxide spin-label lipid haptens have been simultaneously measured. The liposomes were either fluid (dimyristoylphosphatidylcholine) or solid (dipalmitoylphosphatidylcholine) at the temperature of the experiments (32 degrees C). In 10 minutes fluid liposomes activate 40% of the C1 whereas solid liposomes only activate 10% of the C1. The fraction of C1 bound at the end of the activation incubation is approx. 2% for fluid liposomes and approx. 4% for solid liposomes. This binding is consistent with the relative amounts of antibody which bind to these two types of liposomes. These results demonstrate turnover of C1 or C1r2s2 on the liposome surface. It is concluded that the differential activation of C1 is due to a difference in the rate of activation of C1 after it is bound to the liposome surface. Lower limits for the activation rate constant for C1 bound to fluid and solid liposomes are estimated to be 8 X 10(-2) s-1 and 1 X 10(-2) s-1, respectively.  相似文献   

9.
In the previous study, we investigated the induction of ovalbumin (OVA)-specific antibody production in mice by OVA-liposome conjugates made using four different lipid components, including unsaturated carrier lipid and three different saturated carrier lipids. All of the OVA-liposome conjugates tested induced IgE-selective unresponsiveness. The highest titer of anti-OVA IgG was observed in mice immunized with OVA-liposomes made using liposomes with the highest membrane fluidity, suggesting that the membrane fluidity of liposomes affects their adjuvant effect. In this study, liposomes with five different cholesterol inclusions, ranging from 0% to 43% of the total lipid, were made, and the induction of OVA-specific antibody production by OVA-liposome conjugates was compared among these liposome preparations. In contrast to the results in the previous study, liposomes that contained no cholesterol and possessed the lowest membrane fluidity demonstrated the highest adjuvant effect for the induction of IgG antibody production. In addition, when the liposomes with four different lipid compositions were used, OVA-liposome conjugates made using liposomes that did not contain cholesterol induced significantly higher levels of anti-OVA IgG antibody production than did those made using liposomes that contained cholesterol and, further, induced significant production of anti-OVA IgE. These results suggest that cholesterol inclusion in liposomes affects both adjuvanticity for IgG production and regulatory effects on IgE synthesis by the surface-coupled antigen of liposomes.  相似文献   

10.
In the preceding paper (Petrossian, A. and Owicki, J.C. (1984), Biochim. Biophys. Acta 776, 217–227), we describe the binding of a monoclonal anti-fluorescein antibody to a membrane bound fluorescein-lipid hapten. Those results suggest that some of the hapten fluorescein moiety is extended away from the membrane surface and is available for antibody binding, while some of the hapten is sequestered and not immediately available for antibody binding. In this paper, we carry out a spectroscopic study of the membrane-bound hapten and show that there is more than one physically distinct fluorophore environment, with the sequestered hapten associated with the phospholipid headgroup region. The amount of membrane-associated fluorophore depends upon the membrane lipid composition: most of the fluorophore is associated when the lipid is unsaturated or branched-chain phosphatidylcholines (PC), whereas the hapten is largely extended for PC/cholesterol mixtures. The effect of cholesterol on the availability of membrane-bound hapten to antibody binding is not unique to this system. The conversion between sequestered and extended hapten is slow (minutes).  相似文献   

11.
Electron spin resonance measurements were performed in order to investigate the influence of anti-cardiolipin antibodies on cardiolipin-containing liposomes. The physical state of the lipid structures and the alterations caused by the interaction with specific antibody were determined by measuring the freedom of motion of spin-labeled stearic acid derivatives incorporated into the lipid structures. The interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies reduced the mobility of the spin-labeled stearic acid probe I (12, 3), whose nitroxide group is assumed to be located near the polar region of the lipid bilayer. The restricted mobility, which qualitatively resembles the interaction of cardiolipin liposomes with calcium ions, is probably the result of a tighter packing of the polar groups in their crystalline array. The binding sites of the cardiolipin structures for anti-cardiolipin antibodies and Ca2 ions seem to be identical. As indicated by the spin-labeled stearic acid probe I (1, 14), the apolar region of the lipid bilayer is not affected by the interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies.  相似文献   

12.
Non-bilayer phospholipid arrangements are three-dimensional structures that can form when anionic phospholipids with an intermediate form of the tubular hexagonal phase II (H(II)), such as phosphatidic acid, phosphatidylserine or cardiolipin, are present in a bilayer of lipids. The drugs chlorpromazine and procainamide, which trigger a lupus-like disease in humans, can induce the formation of non-bilayer phospholipid arrangements, and we have previously shown that liposomes with non-bilayer arrangements induced by these drugs cause an autoimmune disease resembling human lupus in mice. Here we show that liposomes with non-bilayer phospholipid arrangements induced by Mn2? cause a similar disease in mice. We extensively characterize the physical properties and immunological reactivity of liposomes made of the zwitterionic lipid phosphatidylcholine and a H(II)-preferring lipid, in the absence or presence of Mn2?, chlorpromazine or procainamide. We use an hapten inhibition assay to define the epitope recognized by sera of mice with the disease, and by a monoclonal antibody that binds specifically to non-bilayer phospholipid arrangements, and we report that phosphorylcholine and glycerolphosphorylcholine, which form part of the polar region of phosphatidylcholine, are the only haptens that block the binding of the tested antibodies to non-bilayer arrangements. We propose a model in which the negatively charged H(II)-preferring lipids form an inverted micelle by electrostatic interactions with the positive charge of Mn2?, chlorpromazine or procainamide; the inverted micelle is inserted into the bilayer of phosphatidylcholine, whose polar regions are exposed and become targets for antibody production. This model may be relevant in the pathogenesis of human lupus.  相似文献   

13.
We have studied the interaction between monoclonal anti-trinitrophenyl antibodies (IgGI and IgG2a) and haptenated phospholipid vesicles using stopped-flow fluorometry. Conformational changes of the antibodies were induced very rapidly (within 0.1 s) after binding to lipid haptens (TNP-Cap-DPPE) on the membrane surfaces. Conversely, after that, the bound antibody molecules decreased the degree of molecular motion at different depths m the bilayer, ranging from the polar head group to the terminal methyl groups of the fatty acyl chains. Such an effect reaches all places of the bilayer within 40 s at 25°C.Membrane fluidityStopped-flowLiposomeAntibody Lipid haptenExcimer fluorescence  相似文献   

14.
We have found that superoxide production by human neutrophils can be stimulated by liposomal membranes containing nitroxide spin-labeled lipids in the presence of specific rabbit antibodies directed against the nitroxide group. The extent of superoxide production was found to depend strongly on lipid composition under conditions where the concentration of antibodies and number of exposed haptens were maintained constant. The dependence of neutrophil activation on the physical properties of the liposomal lipid membrane appears to be similar to the dependence of complement depletion on these physical properties.  相似文献   

15.
Complement-dependent immune damage to liposomes mediated by a murine monoclonal antibody to the liposomal bilayer was completely inhibited by ceramide tetrasaccharide (globoside) at an 8% concentration in the liposomes. Lower concentrations of globoside, or higher concentrations of ceramide tri-, di-, or monohexoside, were not inhibitory. At a globoside concentration of 5.8%, inhibition of the monoclonal antibody activity was reduced and inhibition was related to antibody concentration; but at 2% globoside, suppression of antibody activity was not observed at all. Analysis of space-filling models revealed that at 8% globoside the distance between adjacent tetrasaccharides of globoside approached the dimensions of the antigen-binding end of a 7S immunoglobulin molecule. We therefore propose that globoside, and perhaps other glycolipids, can exert steric hindrance to the binding of extracellular proteins to nonglycolipid constituents of the lipid bilayer. We conclude that microheterogeneity among polar groups of glycolipids may be a novel mechanism for allowing selective access of proteins to phospholipids on the lipid bilayer.  相似文献   

16.
The isolation and characterization of a hybridoma cell line producing a monoclonal IgG1 antibody against a spin-label nitroxide group is described. The antibody recognizes a synthetic hapten containing linked dinitrophenyl and 2,2,6,6-tetramethylpiperidinyl 1-oxy groups, having an affinity of 3.6±1.0·106 M?1 for the soluble hapten at 25°C. The antibody binds to phospholipid vesicles containing 2 mol% of spin label-derivitized lipid (lipid hapten) with an affinity of 1.5±0.2·108 M?1. This monoclonal IgG1 mediates the binding of hapten-bearing lipid vesicles to mouse macrophage RAW264 cells bearing Fc receptors. The cellular responses to this binding are similar to those observed previously using polyclonal rabbit anti-hapten IgG. As with the heterogeneous antibodies, the monoclonal IgG1 is more efficient in mediating cellular uptake when the vesicles are in the ‘fluid’ physical state (dimyristoylphosphatidylcholine at 37°C) compared to ‘solid’ (dipalmitoylphosphatidylcholine at 37°C). Despite the enhanced binding of ‘fluid’ phospholipid vesicles to cells, only the ‘solid’ vesicles triggered a significant respiratory burst in RAW264 macrophages.  相似文献   

17.
Complement-dependent immune damage to liposomes mediated by a murine monoclonal antibody to the liposomal bilayer was completely inhibited by ceramide tetrasaccharide (globoside) at an 8% concentration in the liposomes. Lower concentrations of globoside, or higher concentrations of ceramide tri-, di-, or monohexoside, were not inhibitory. At a globoside concentration of 5.8%, inhibition of the monoclonal antibody activity was reduced and inhibition was related to antibody concentration; but at 2% globoside, suppression of antibody activity was not observed at all. Analysis of space-filling models revealed that at 8% globoside the distance between adjacent tetrasaccharides of globoside approached the dimensions of the antigen-binding end of a 7S immunoglobulin molecule. We therefore propose that globoside, and perhaps other glycolipids, can exert steric hindrance to the binding of extracellular proteins to nonglycolipid constituents of the lipid bilayer. We conclude that microheterogeneity among polar groups of glycolipids may be a novel mechanism for allowing selective access of proteins to phospholipids on the lipid bilayer.  相似文献   

18.
Interaction of digitonin and its analogs with membrane cholesterol   总被引:1,自引:0,他引:1  
The interaction of digitonin with membrane cholesterol was studied by using various digitonin analogs, and radioactive desglucodigitonin. The following results were obtained concerning the effect of digitonin on erythrocytes, granulocytes and liposomes. Digitonin and its analogs showed activity to induce hemolysis, granulocyte activation and liposomal membrane damage. The activity was affected by change of the carbohydrate residue of the molecule; the order of hemolytic activity was digitonin greater than or equal to desglucodigitonin much greater than glucosyl-galactosyl-digitogenin greater than galactosyl-digitogenin, digitogenin. The relative activities of these compounds to induce granulocyte activation and liposomal membrane damage were similar to those observed in the hemolysis. [3H]Desglucodigitonin could bind to cholesterol in liposomes. The binding was stoichiometric and the ratio of desglucodigitonin bound to liposomes/cholesterol in liposomes was close to 1, irrespective of the cholesterol content in liposome. Damage to liposomes was, however, induced by desglucodigitonin only when they contained more than 0.2 molar ratio of cholesterol to phospholipid. Addition of digitonin as well as desglucodigitonin to preformed liposomes deprived of cholesterol affected the anisotropic molecular motion of spin-labeled phosphatidylcholine incorporated into the liposomes, suggesting that the molecules could be inserted into the lipid bilayer free of cholesterol. Molecules of desglucodigitonin in the lipid phase may, however, be equilibrated with those in the aqueous phase, unless they form a complex with cholesterol, since no appreciable amount of [3H]desglucodigitonin could be detected in the liposome fraction after separation by column chromatography. Digitonin decreased the order parameter of spin-labeled phosphatidylcholine when liposomes contained equimolar cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cultured mouse 3T3 cells treated with phosphatidylserine or phosphatidylserine/phosphatidylcholine (3: 7 mole ratio) liposomes containing ortho- and paramyxovirus envelope glycoproteins become susceptible to killing by virus-specific cytotoxic T lymphocytes indicating that the liposome-derived glycoproteins have been inserted into the cellular plasma membrane. Cells incubated with liposomes of similar lipid composition containing viral antigens plus a dinitrophenylated lipid hapten were killed by both virus- and hapten-specific T lymphocytes indicating that both protein and lipid components are inserted into the plasma membrane. We consider that assimilation of liposome-derived antigens into the plasma membrane results from fusion of liposomes with the plasma membrane. Cells incubated with phosphatidylcholine liposomes containing lipid haptens and viral glycoproteins were not killed by cytotoxic lymphocytes indicating that liposomes of this composition do not fuse with the plasma membrane. Liposome-derived paramyxovirus glycoproteins inserted into the plasma membrane retain their functional activity as shown by their ability to induce cell fusion. These experiments demonstrate the feasibility of using liposomes as carriers for introducing integral membrane (glyco)proteins into the plasma membrane of cultured cells and establish a new approach for studying the role of individual (glyco)proteins in the expression of specific cell surface properties.  相似文献   

20.
Interaction of Sindbis virus with liposomal model membranes.   总被引:15,自引:6,他引:9  
Radiolabeled Sindbis virus was found to bind to protein-free lipid model membranes (liposomes) derived from extracts of sheep erythrocytes. The virus interaction was dependent on initial pH, and the range of pH dependence (pH 6.0 to 6.8) was the same as the observed with virus-dependent hemagglutination. After the initial interaction, pH changes no longer influenced the virus binding to liposomes. Virus bound to liposomes prepared from a mixture of erythrocyte phospholipids, but the binding was greatly diminished when either cholesterol or phosphatidylethanolamine was omitted from the liposomal lipid mixture. It was concluded that phospholipids and cholesterol, in a bilayer configuration, may be sufficient for specific virus binding in the absence of membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号