首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Postcanalicular lung development is characterized by a time-specific increase in alveolar epithelial type II cell apoptosis. We have previously demonstrated that, in fetal rabbits, developmental type II cell apoptosis coincides with transient upregulation of the cell death regulator Fas ligand (FasL). The aims of this study were 1) to determine the spatiotemporal patterns of pulmonary apoptosis and Fas/FasL gene expression in the murine model [embryonic day 17 (E17) through postnatal day 5 (P5)], and 2) to investigate the functional involvement of the Fas/FasL system by determining the effect of Fas activation and inhibition on perinatal pulmonary apoptosis. The apoptotic activity of alveolar epithelial type II cells, determined by combined TUNEL labeling and anti-surfactant protein B immunohistochemistry, showed a dramatic increase during the perinatal transition (type II cell apoptotic index <0.1% at E17, 1.5% at P1-P3, and 0.3% at P5). This timing of enhanced type II cell apoptosis coincided with a robust 14-fold increase in Fas mRNA and protein levels and a threefold increase in FasL protein levels; both Fas and FasL immunolocalized to type II and bronchial epithelial cells. In vitro and in vivo exposure of fetal and postnatal murine type II cells to anti-Fas antibody induced a fourfold increase in apoptotic activity that was prevented by administration of a broad-spectrum caspase inhibitor; the pulmonary apoptotic activity of Fas-deficient lpr mice remained unchanged. Conversely, administration of a caspase inhibitor to newborn mice (P1) resulted in marked diminution of pulmonary apoptotic activity. These combined findings strongly implicate the Fas/FasL system as a critical regulator of perinatal type II cell apoptosis. The developmental time dependence of apoptosis-related events in the murine model should facilitate investigations of the regulation of perinatal pulmonary apoptotic gene expression.  相似文献   

2.
Apoptosis plays a central role in the cellular remodeling of the developing lung. We determined the spatiotemporal patterns of the cell death regulators Fas and Fas ligand (FasL) during rabbit lung development and correlated their expression with pulmonary and type II cell apoptosis. Fetal rabbit lungs (25-31 days gestation) were assayed for apoptotic activity by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and DNA size analysis. Fas and FasL expression were analyzed by RT-PCR, immunoblot, and immunohistochemistry. Type II cell apoptosis increased significantly on gestational day 28; the type II cell apoptotic index increased from 0.54 +/- 0.34% on gestational day 27 to 3.34 +/- 1.24% on day 28, P < 0.01 (ANOVA). This corresponded with the transition from the canalicular to the terminal sac stage of development. The day 28 rise in epithelial apoptosis was synchronous with a robust if transient 20-fold increase in FasL mRNA and a threefold increase in FasL protein levels. In contrast, Fas mRNA levels remained constant, suggestive of constitutive expression. Fas and FasL proteins were immunolocalized to alveolar type II cells and bronchiolar Clara cells. The correlation of this highly specific pattern of FasL expression with alveolar epithelial apoptosis and remodeling implicates the Fas/FasL system as a potentially important regulatory pathway in the control of postcanalicular alveolar cytodifferentiation.  相似文献   

3.
Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.  相似文献   

4.
Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing liposomes. Liposomes containing clodronate or PBS were instilled by intratracheal instillation. After 24 h, the mice received intratracheal instillations of the Fas-activating monoclonal antibody Jo2 or an isotype control antibody and were studied 18 h later. The Jo2 MAb induced increases in bronchoalveolar lavage fluid (BALF) total neutrophils, lung caspase-3 activity, and BALF total protein and worsened histological lung injury in the macrophage-depleted mice. Studies in vitro showed that Fas activation induced the release of the cytokine KC in a mouse lung epithelial cell line, MLE-12. These results suggest that the lung inflammatory response to Fas activation is not primarily dependent on resident alveolar macrophages and may instead depend on cytokine release by alveolar epithelial cells.  相似文献   

5.
Exposure to bleomycin in rodents induces lung injury and fibrosis. Alveolar epithelial cell death has been hypothesized as an initiating mechanism underlying bleomycin-induced lung injury and fibrosis. In the present study we evaluated the contribution of mitochondrial and receptor-meditated death pathways in bleomycin-induced death of mouse alveolar epithelial cells (MLE-12 cells) and primary rat alveolar type II cells. Control MLE-12 cells and primary rat alveolar type II cells died after 48 h of exposure to bleomycin. Both MLE-12 cells and rat alveolar type II cells overexpressing Bcl-X(L) did not undergo cell death in response to bleomycin. Dominant negative Fas-associating protein with a death domain failed to prevent bleomycin-induced cell death in MLE-12 cells. Caspase-8 inhibitor CrmA did not prevent bleomycin-induced cell death in primary rat alveolar type II cells. Furthermore, fibroblast cells deficient in Bax and Bak, but not Bid, were resistant to bleomycin-induced cell death. To determine whether the stress kinase JNK was an upstream regulator of Bax activation, MLE-12 cells were exposed to bleomycin in the presence of an adenovirus encoding a dominant negative JNK. Bleomycin-induced Bax activation was prevented by the expression of a dominant negative JNK in MLE-12 cells. Dominant negative JNK prevented cell death in MLE-12 cells and in primary rat alveolar type II cells exposed to bleomycin. These data indicate that bleomycin induces cell death through a JNK-dependent mitochondrial death pathway in alveolar epithelial cells.  相似文献   

6.
7.
Keratinocyte growth factor (KGF) induces rapid and transient hyperplasia of alveolar epithelial type II cells. We sought to determine components of the apoptotic process involved in the resolution of this hyperplasia and the fate of the apoptotic cells. Rats received intrabronchial instillation of 5 mg KGF/kg body weight or diluent. Lungs were fixed 1, 2, 3, 5, and 7 days later. Apoptosis was identified by TdT-mediated dUTP nick-end labeling (TUNEL), double-labeling for TUNEL and the type II cell marker MNF116, and electron microscopy. Fas, FasL, Bax, Bcl-2, and pro- and active caspase-3 were studied by immunohistochemistry. Changes were quantified by stereology. Cell type specificity was investigated by immunofluorescence double staining. Type II cells exhibited Fas, FasL, Bcl-2, and procaspase-3 irrespective of treatment and time. Immunoelectron microscopy revealed Fas at the apical type II cell membrane. Bax staining was prominent in controls (45-95% of type II cell surface fraction), markedly decreased during hyperplasia at days 2 (20-40%) and 3 (0-10%), and reappeared at day 7 (25-45%) when apoptosis was prominent. Remnants of apoptotic type II cells were incorporated in membrane-bound vacuoles of type II cell neighbors as well as alveolar macrophages. The results indicate that type II cells can enter the Fas/FasL/caspase-3 pathway regulated by Bax and Bcl-2. High Bcl-2:Bax levels favor type II cell survival and a low rate of apoptosis during hyperplasia. Low Bcl-2:Bax levels favor type II cell apoptosis during resolution. Because of time-dependent changes that occur within a short time, the KGF-treated rat lung provides a useful in vivo model to investigate apoptosis in the context of tissue remodeling and repair.  相似文献   

8.
Oxidative stress is regarded as a key regulator in the pathogenesis of prolonged hyperoxia-induced lung injury, which causes injury to alveolar epithelial cells and eventually leads to development of bronchopulmonary dysplasia (BPD). Many studies have shown that hydrogen has a protective effect in a variety of cells. However, the mechanisms by which hydrogen rescues cells from damage due to oxidative stress in BPD remains to be fully elucidated. This study sought to evaluate the effects of hydrogen on hyperoxia-induced lung injury and to investigate the underlying mechanism. Primary type II alveolar epithelial cells (AECIIs) were divided into four groups: control (21% oxygen), hyperoxia (95% oxygen), hyperoxia + hydrogen, and hyperoxia + hydrogen + LY294002 (a PI3K/Akt inhibitor). Proliferation and apoptosis of AECIIs were assessed using MTS assay and flow cytometry (FCM), respectively. Gene and protein expression were detected by quantitative polymerase chain reaction (q-PCR) and western blot analysis. Stimulation with hyperoxia decreased the expression of P-Akt, P- FoxO3a, cyclinD1 and Bcl-2. Hyperoxic conditions increased levels of Bim, Bax, and Foxo3a, which induced proliferation restriction and apoptosis of AECIIs. These effects of hyperoxia were reversed with hydrogen pretreatment. Furthermore, the protective effects of hydrogen were abrogated by PI3K/Akt inhibitor LY294002. The results indicate that hydrogen protects AECIIs from hyperoxia-induced apoptosis by inhibiting apoptosis factors and promoting the expression of anti-apoptosis factors. These effects were associated with activation of the PI3K/Akt/FoxO3a pathway.  相似文献   

9.
Hyperoxia can lead to a myriad of deleterious effects in the lung including epithelial damage and diffuse inflammation. The specific mechanisms by which hyperoxia promotes these pathological changes are not completely understood. Activation of ion channels has been proposed as one of the mechanisms required for cell activation and mediator secretion. The two-pore-domain K(+) channel (K2P) Trek-1 has recently been described in lung epithelial cells, but its function remains elusive. In this study we hypothesized that hyperoxia affects expression of Trek-1 in alveolar epithelial cells and that Trek-1 is involved in regulation of cell proliferation and cytokine secretion. We found gene expression of several K2P channels in mouse alveolar epithelial cells (MLE-12), and expression of Trek-1 was significantly downregulated in cultured cells and lungs of mice exposed to hyperoxia. Similarly, proliferation cell nuclear antigen (PCNA) and Cyclin D1 expression were downregulated by exposure to hyperoxia. We developed an MLE-12 cell line deficient in Trek-1 expression using shRNA and found that Trek-1 deficiency resulted in increased cell proliferation and upregulation of PCNA but not Cyclin D1. Furthermore, IL-6 and regulated on activation normal T-expressed and presumably secreted (RANTES) secretion was decreased in Trek-1-deficient cells, whereas release of monocyte chemoattractant protein-1 was increased. Release of KC/IL-8 was not affected by Trek-1 deficiency. Overall, deficiency of Trek-1 had a more pronounced effect on mediator secretion than exposure to hyperoxia. This is the first report suggesting that the K(+) channel Trek-1 could be involved in regulation of alveolar epithelial cell proliferation and cytokine secretion, but a direct association with hyperoxia-induced changes in Trek-1 levels remains elusive.  相似文献   

10.
Hyperoxia-induced lung injury limits the application of mechanical ventilation on rescuing the lives of premature infants and seriously ill and respiratory failure patients, and its mechanisms are not completely understood. In this article, we focused on the relationship between hyperoxia-induced lung injury and reactive oxygen species (ROS), reactive nitrogen species (RNS), mitochondria damage, as well as apoptosis in the pulmonary epithelial II cell line RLE-6TN. After exposure to hyperoxia, the cell viability was significantly decreased, accompanied by the increase in ROS, nitric oxide (NO), inflammatory cytokines, and cell death. Furthermore, hyperoxia triggered the loss of mitochondrial membrane potential (▵Ψm), thereby promoting cytochrome c to release from mitochondria to cytoplasm. Further studies conclusively showed that the Bax/Bcl-2 ratio was enlarged to activate the mitochondria-dependent apoptotic pathway after hyperoxia treatment. Intriguingly, the effects of hyperoxia on the level of ROS, NO and inflammation, mitochondrial damage, as well as cell death were reversed by free radical scavengers N-acetylcysteine and hemoglobin. In addition, a hyperoxia model of neonatal Sprague-Dawley (SD) rats presented the obvious characteristics of lung injury, such as a decrease in alveolar numbers, alveolar mass edema, and disorganized pulmonary structure. The effects of hyperoxia on ROS, RNS, inflammatory cytokines, and apoptosis-related proteins in lung injury tissues of neonatal SD rats were similar to that in RLE-6TN cells. In conclusion, mitochondria are a primary target of hyperoxia-induced free radical, whereas ROS and RNS are the key mediators of hyperoxia-induced cell apoptosis via the mitochondria-dependent pathway in RLE-6TN cells.  相似文献   

11.
Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.  相似文献   

12.
The aim of this study is to investigate whether silencing of Fas could have an influence on type II alveolar epithelial cell (AEC) apoptosis and inflammatory cytokine production, which prevents alveolar healing after acute lung injury (ALI). Rat primary type II AECs were isolated by elastase cell dispersion and IgG panning. The cells were transfected with Fas-specific small interfering RNA (siRNA) followed by treatment with lipopolysaccharide (LPS), Fas ligand (FasL) or both. The effects of siRNA-mediated silencing of Fas on LPS-induced apoptosis and cytokine release were then assessed. Notably, LPS, either alone or together with FasL, significantly stimulated type II AEC apoptosis and the release of tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein 1 (MCP-1) (P < 0.05 versus the control without treatment). Moreover, the effects exerted by both LPS and FasL were considerably counteracted by pretreatment with Fas-siRNA (P < 0.05 versus treatment with LPS and FasL). In conclusion, inhibition of Fas can diminish LPS-induced apoptosis and inflammatory cytokine production in type II AECs, and Fas specific siRNAs may have therapeutic potentials for intervention of ALI/ARDS.  相似文献   

13.
14.
Exposure of mice to hyperoxia induces alveolar epithelial cell (AEC) injury, acute lung injury and death. Overexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in the lung protects against these effects, although the mechanisms are not yet clear. Hyperoxia induces cellular injury via effects on mitochondrial integrity, associated with induction of proapoptotic members of the Bcl-2 family. We hypothesized that GM-CSF protects AEC through effects on mitochondrial integrity. MLE-12 cells (a murine type II cell line) and primary murine type II AEC were subjected to oxidative stress by exposure to 80% oxygen and by exposure to H(2)O(2). Exposure to H(2)O(2) induced cytochrome c release and decreased mitochondrial reductase activity in MLE-12 cells. Incubation with GM-CSF significantly attenuated these effects. Protection induced by GM-CSF was associated with Akt activation. GM-CSF treatment also resulted in increased expression of the antiapoptotic Bcl-2 family member, Mcl-1. Primary murine AEC were significantly more tolerant of oxidative stress than MLE-12 cells. In contrast to MLE-12 cells, primary AEC expressed significant GM-CSF at baseline and demonstrated constitutive activation of Akt and increased baseline expression of Mcl-1. Treatment with exogenous GM-CSF further increased Akt activation and Mcl-1 expression in primary AEC. Conversely, suppression of AEC GM-CSF expression by use of GM-CSF-specific small interfering RNA resulted in decreased tolerance of oxidative stress, Furthermore, silencing of Mcl-1 prevented GM-CSF-induced protection. We conclude that GM-CSF protects alveolar epithelial cells against oxidative stress-induced mitochondrial injury via the Akt pathway and its downstream components, including Mcl-1. Epithelial cell-derived GM-CSF may contribute to intrinsic defense mechanisms limiting lung injury.  相似文献   

15.
Germ cell apoptosis, which occurs normally during spermatogenesis, increases after testosterone withdrawal from the testis. The molecular mechanism by which this occurs remains uncertain. The Fas system has been implicated as a possible key regulator of apoptosis in various cells: binding of Fas ligand (FasL), a type II transmembrane protein, to Fas, a type I transmembrane receptor protein, triggers apoptosis in cells expressing Fas. Recently, Fas has been localized to germ cells, and FasL to Sertoli cells, within the rat testis. We hypothesized that Fas protein content would rise in response to reduced levels of testosterone as part of a suicide pathway that would result in germ cell apoptosis. To test this hypothesis, ethane 1,2-dimethanesulfonate (EDS), a Leydig cell toxicant, was used to kill Leydig cells and thus reduce intratesticular testosterone levels in Sprague Dawley rats. Apoptosis was examined in situ and biochemically, and Fas protein content in the testis was monitored by Western blot analysis. We show that EDS injection results in the following sequence of events: apoptotic death of Leydig cells by a mechanism that does not involve Fas; reduced testosterone; increased testicular Fas content; and germ cell apoptosis. These results suggest that Fas may play a role in the apoptotic death of germ cells that results from reduced intratesticular testosterone levels, and that testosterone may play a role in germ cell survival via its suppression of Fas.  相似文献   

16.
Exposure of animals to hyperoxia results in respiratory failure and death within 72 h. Histologic evaluation of the lungs of these animals demonstrates epithelial apoptosis and necrosis. Although the generation of reactive oxygen species (ROS) is widely thought to be responsible for the cell death observed following exposure to hyperoxia, it is not clear whether they act upstream of activation of the cell death pathway or whether they are generated as a result of mitochondrial membrane permeabilization and caspase activation. We hypothesized that the generation of ROS was required for hyperoxia-induced cell death upstream of Bax activation. In primary rat alveolar epithelial cells, we found that exposure to hyperoxia resulted in the generation of ROS that was completely prevented by the administration of the combined superoxide dismutase/catalase mimetic EUK-134 (Eukarion, Inc., Bedford, MA). Exposure to hyperoxia resulted in the activation of Bax at the mitochondrial membrane, cytochrome c release, and cell death. The administration of EUK-134 prevented Bax activation, cytochrome c release, and cell death. In a mouse lung epithelial cell line (MLE-12), the overexpression of Bcl-XL protected cells against hyperoxia by preventing the activation of Bax at the mitochondrial membrane. We conclude that exposure to hyperoxia results in Bax activation at the mitochondrial membrane and subsequent cytochrome c release. Bax activation at the mitochondrial membrane requires the generation of ROS and can be prevented by the overexpression of Bcl-XL.  相似文献   

17.
Pre-term neonates and neonates in general exhibit physiological vitamin E deficiency and are at increased risk for the development of acute lung diseases. Apoptosis is a major cause of acute lung damage in alveolar type II cells. In this paper, we evaluated the hypothesis that vitamin E deficiency predisposes alveolar type II cells to apoptosis. Therefore, we measured markers of apoptosis in alveolar type II cells isolated from control rats, vitamin E deficient rats and deficient rats that were re-fed a vitamin E-enriched diet. Bax and cytosolic cytochrome c increased, and the mitochondrial transmembrane potential and Hsp25 expression was reduced in vitamin E deficiency. Furthermore, increased DNA-fragmentation and numbers of early and late apoptotic cells were seen, but caspases 3 and 8 activities and expression of Fas, Bcl-2, Bcl-x and p53 remained unchanged. Vitamin E depletion did not change the GSH/GSSG ratio and the activities of antioxidant enzymes. Thus, vitamin E deficiency may induce a reversible pro-apoptotic response in lung cells and sensitise them for additional insult. In agreement with this hypothesis, we demonstrate that in vivo hyperoxia alone does not induce apoptosis in type II cells of control rats but reversibly increases DNA-fragmentation and numbers of early apoptotic type II cells in vitamin E-depleted cells.  相似文献   

18.
Pre-term neonates and neonates in general exhibit physiological vitamin E deficiency and are at increased risk for the development of acute lung diseases. Apoptosis is a major cause of acute lung damage in alveolar type II cells. In this paper, we evaluated the hypothesis that vitamin E deficiency predisposes alveolar type II cells to apoptosis. Therefore, we measured markers of apoptosis in alveolar type II cells isolated from control rats, vitamin E deficient rats and deficient rats that were re-fed a vitamin E-enriched diet. Bax and cytosolic cytochrome c increased, and the mitochondrial transmembrane potential and Hsp25 expression was reduced in vitamin E deficiency. Furthermore, increased DNA-fragmentation and numbers of early and late apoptotic cells were seen, but caspases 3 and 8 activities and expression of Fas, Bcl-2, Bcl-x and p53 remained unchanged. Vitamin E depletion did not change the GSH/GSSG ratio and the activities of antioxidant enzymes. Thus, vitamin E deficiency may induce a reversible pro-apoptotic response in lung cells and sensitise them for additional insult. In agreement with this hypothesis, we demonstrate that in vivo hyperoxia alone does not induce apoptosis in type II cells of control rats but reversibly increases DNA-fragmentation and numbers of early apoptotic type II cells in vitamin E-depleted cells.  相似文献   

19.
It is well established that exposure to high levels of oxygen (hyperoxia) injures and kills microvascular endothelial and alveolar type I epithelial cells. In contrast, significant death of airway and type II epithelial cells is not observed at mortality, suggesting that these cell types may express genes that protect against oxidative stress and damage. During a search for genes induced by hyperoxia, we previously reported that airway and alveolar type II epithelial cells uniquely express the growth arrest and DNA damage (Gadd)45a gene. Because Gadd45a has been implicated in protection against genotoxic stress, adult Gadd45a (+/+) and Gadd45a (-/-) mice were exposed to hyperoxia to investigate whether it protected epithelial cells against oxidative stress. During hyperoxia, Gadd45a deficiency did not affect loss of airway epithelial expression of Clara cell secretory protein or type II epithelial cell expression of pro-surfactant protein C. Likewise, Gadd45a deficiency did not alter recruitment of inflammatory cells, edema, or overall mortality. Consistent with Gadd45a not affecting the oxidative stress response, p21(Cip1/WAF1) and heme oxygenase-1 were comparably induced in Gadd45a (+/+) and Gadd45a (-/-) mice. Additionally, Gadd45a deficiency did not affect oxidative DNA damage or apoptosis as assessed by oxidized guanine and terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling staining. Overexpression of Gadd45a in human lung adenocarcinoma cells did not affect viability or survival during exposure, whereas it was protective against UV-radiation. We conclude that increased tolerance of airway and type II epithelial cells to hyperoxia is not attributed solely to expression of Gadd45a.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号