首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edwardsiella tarda is pathogen of fish and other animals. The aim of this study was to investigate the viable but nonculturable (VBNC) state and virulence retention of this bacterium. Edwardsiella tarda CW7 was cultured in sterilized aged seawater at 4 degrees C. Total cell counts remained constant throughout the 28-day period by acridine orange direct counting, while plate counts declined to undetectable levels (<0.1 CFU/ml) within 28 days by plate counting. The direct viable counts, on the other hand, declined to ca. 10(9) CFU/ml active cells and remained fairly constant at this level by direct viable counting. These results indicated that a large population of cells existed in a viable but nonculturable state. VBNC E. tarda CW7 could resuscitate in experimental chick embryos and in the presence of nutrition with a temperature upshift. The resuscitative times were 6 days and 8 days, respectively. The morphological changes of VBNC, normal, and resuscitative E. tarda CW7 cells were studied with a scanning electron microscope. The results showed that when the cells entered into the VBNC state, they gradually changed in shape from short rods to coccoid and decreased in size, but the resuscitative cells did not show any obvious differences from the normal cells. The VBNC and the resuscitative E. tarda CW7 cells were intraperitoneally inoculated into turbot separately, and the fish inoculated with the resuscitative cells died within 7 days, which suggested that VBNC E. tarda CW7 might retain pathogenicity.  相似文献   

2.
3.
Aims:  The aim was to characterize the viable but nonculturable (VBNC) state of Vibrio cincinnatiensis and its resuscitation.
Methods and Results:  Vibrio cincinnatiensis VIB287 was cultured in sterilized seawater microcosms at 4°C. Plate counts, direct viable counts and total counts were used. A large population of the V. cincinnatiensis became nonculturable after approx. 50 day at 4°C. Electron microscopy revealed that the VBNC cells changed from rod to coccoid and decreased in size. Resuscitation of VBNC cells was achieved by temperature upshift in nutrition of yeast extract and peptone by addition of catalase or compound vitamin B. The VBNC and resuscitative cells were intraperitoneally injected into zebra fish separately. No death was observed in the group inoculated with the VBNC cells.
Conclusions:  Vibrio cincinnatiensis VIB287 could enter VBNC state in adverse environments. Resuscitation of VBNC cells occurred by addition of compound vitamin B or catalase to VBNC cells containing nutrient. The resuscitative cells might retain their pathogenicity.
Significance and Impact of the Study:  The study confirmed that V. cincinnatiensis could enter into VBNC state in seawater at low temperature and resuscitated. The resuscitative cells retained their pathogenicity, which may be important in future studies of ecology of V. cincinnatiensis .  相似文献   

4.
Du M  Chen J  Zhang X  Li A  Li Y 《Archives of microbiology》2007,188(3):283-288
The aim of this study was to investigate the viable but nonculturable (VBNC) state of the bacterium. Vibrio alginolyticus VIB283 was cultured in sterilized seawater microcosm at 4°C. Culturability of the cells in the microcosm was monitored by spread plate count (PC) on 2216E agar, PCs declined to undetectable levels (<0.1 CFU/ml) within 90 days. Total cell counts remained constant throughout the period as determined by acridine orange direct count (AODC). The direct viable counts, on the other hand, declined from 1010 to 109 CFU/ml active cells and remained fairly constant at this level by direct viable count (DVC), which indicated that a large population of cells entered into the VBNC state. The VBNC cells could be resuscitated by temperature upshift with and without the presence of nutrition. The resuscitated time were 16 h and 8 days respectively. The resuscitation was not achieved in chick embryos. The morphology of the VBNC, normal and resuscitated cells was studied with scanning electron microscope and flow cytometry. The cells changed from rod or arc to coccoid and decreased in size when entered into the VBNC state. The resuscitated and the normal cells had almost no morphological differences.  相似文献   

5.
The existence of a viable but nonculturable (VBNC) state has been described for Campylobacter jejuni as it had been for a number pathogenic bacteria. Three C. jejuni human isolates were suspended in surface water and subsequently entered the VBNC state. After starvation for 30 days, VBNC cells were inoculated in the yolk sacs of embryonated eggs. Culturable cells were detected in a large proportion of the embryonated eggs inoculated with VBNC C. jejuni cells. Recovered cells kept their adhesion properties.  相似文献   

6.
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. The bacterium occurs naturally in molluscan shellfish, and ingestion of raw oysters is typically the source of human infection. V. vulnificus is also known to enter a viable but nonculturable (VBNC) state, wherein the cells are no longer culturable on routine plating media but can be shown to remain viable. Whether or not this human pathogen remains virulent when entering the VBNC state has not been definitively demonstrated. In this study, the VBNC state was induced through a temperature downshift to 5 degrees C, with cells becoming nonculturable (< 0.1 CFU/ml) within 7 days. As they became nonculturable, virulence was determined by employing an iron overload mouse model. At the point of nonculturability (7 days), injections of the diluted microcosm population resulted in death when < 0.04 CFU was inoculated, although > 10(5) cells in the VBNC state were present in the inoculum. Culturable cells of V. vulnificus, with identification confirmed through PCR, were recovered from the blood and peritoneal cavities of mice which had died from injections of cells present in the VBNC state for at least 3 days. Thus, our data suggest that cells of V. vulnificus remain virulent, at least for some time, when present in the VBNC state and are capable of causing fatal infections following in vivo resuscitation. Our studies also indicate, however, that virulence decreases significantly as cells enter the VBNC state, which may account, at least to some extent, for the decrease in infections caused by this bacterium during winter months.  相似文献   

7.
Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.  相似文献   

8.
The viable but nonculturable (VBNC) state is a survival strategy adopted by many pathogens when exposed to harsh environmental stresses. In this study, we investigated for the first time that whether high pressure CO2 (HPCD), one of the nonthermal pasteurization techniques, can induce Escherichia coli O157:H7 into the VBNC state. By measuring plate counts, viable cell counts and total cell counts, E. coli O157:H7 in 0.85% NaCl solution (pH 7.0) was able to enter the VBNC state by HPCD treatment at 5 MPa and four temperatures (25°C, 31°C, 34°C and 37°C). Meanwhile, with the improvement of treatment temperature, the time required for E. coli O157:H7 to enter VBNC state would shorten. Enzymatic activities in these VBNC cells were lower than those in the exponential-phase cells by using API ZYM kit, which were also reduced with increasing the treatment temperature, but the mechanical resistance of the VBNC cells to sonication was enhanced. These results further confirmed VBNC state was a self-protection mechanism for some bacteria, which minimized cellular energetic requirements and increased the cell resistance. When incubated in tryptic soy broth at 37°C, the VBNC cells induced by HPCD treatment at 25°C, 31°C and 34°C achieved resuscitation, but their resuscitation capabilities decreased with increasing the treatment temperature. Furthermore, electron microscopy revealed changes in the morphology and interior structure of the VBNC cells and the resuscitated cells. These results demonstrated that HPCD could induce E. coli O157:H7 into the VBNC state. Therefore, it is necessary to detect if there exist VBNC microorganisms in HPCD-treated products by molecular-based methods for food safety.  相似文献   

9.
Death of the Escherichia coli K-12 strain W3110 in soil and water.   总被引:2,自引:0,他引:2       下载免费PDF全文
Whether Escherichia coli K-12 strain W3110 can enter the "viable but nonculturable" state was studied with sterile and nonsterile water and soil at various temperatures. In nonsterile river water, the plate counts of added E. coli cells dropped to less than 10 CFU/ml in less than 10 days. Acridine orange direct counts, direct viable counts, most-probable-number estimates, and PCR analyses indicated that the added E. coli cells were disappearing from the water in parallel with the number of CFU. Similar results were obtained with nonsterile soil, although the decline of the added E. coli was slower. In sterile water or soil, the added E. coli persisted for much longer, often without any decline in the plate counts even after 50 days. In sterile river water at 37 degrees C and sterile artificial seawater at 20 and 37 degrees C, the plate counts declined by 3 to 5 orders of magnitude, while the acridine orange direct counts remained unchanged. However, direct viable counts and various resuscitation studies all indicated that the nonculturable cells were nonviable. Thus, in either sterile or nonsterile water and soil, the decline in plate counts of E. coli K-12 strain W3110 is not due to the cells entering the viable but nonculturable state, but is simply due to their death.  相似文献   

10.
The gfp-tagging method and lux-tagging method were compared to select a better method for verifying a viable but nonculturable (VBNC) state of bacteria in the environment. An environmental isolate of Salmonella typhi was chromosomally marked with a gfp gene encoding green fluorescent protein (GFP). The hybrid transposon mini-Tn5 gfp was transconjugated from E. coli to S. typhi. Using the same method, S. typhi was chromosomally marked with luxAB genes encoding luciferase. The survival of gfp-tagged S. typhi introduced into groundwater microcosms was examined by GFP-based plate count, total cell count, and a direct viable count method. In microcosms containing lux-tagged S. typhi, luminescence-based plate count and the measurement of bioluminescence of each microcosm sample were performed. In microcosms containing lux-tagged S. typhi, viable but nonculturable cells could not be detected by using luminometry. As no distinguishable luminescence signals from the background signals were found in samples containing no culturable cells, a VBNC state of S. typhi could not be verified in lux-based systems. However, comparison between GFP-based direct viable counts and plate counts was a good method for verifying the VBNC state of S. typhi. Because GFP-based direct viable count method provided a direct and precise estimation of viable cells of introduced bacteria into natural environments, it can be used for verifying the VBNC state of bacteria in environmental samples.  相似文献   

11.
Vibrio harveyi has been reported to enter into a viable but nonculturable (VBNC) state. One marine V. harveyi strain, SF1 became nonculturable when incubated in seawater microcosm at 4 °C within 60 days. We investigated protein expression in the exponential phase of V. harveyi SF1 and compared it to the VBNC state. Cytosolic proteins were resolved by two-dimensional polyacrylamide gel electrophoresis using pH 4–7 linear gradients. Among these proteins, sixteen proteins which were strongly downregulated or upregulated in the VBNC cells were identified by MALDI-TOF-TOF mass spectrometry. The results indicated that the differentially expressed proteins were mainly focused on stress response proteins and key components of central and intermediary metabolism, like carbohydrate metabolism, transport, and translation. This study provided clues for understanding the mechanism of adaptation to the VBNC state.  相似文献   

12.
The existence of a viable but nonculturable (VBNC) state has been described for Campylobacter jejuni as it had been for a number pathogenic bacteria. Three C. jejuni human isolates were suspended in surface water and subsequently entered the VBNC state. After starvation for 30 days, VBNC cells were inoculated in the yolk sacs of embryonated eggs. Culturable cells were detected in a large proportion of the embryonated eggs inoculated with VBNC C. jejuni cells. Recovered cells kept their adhesion properties.  相似文献   

13.
Using plate counts, total cell counts, and direct viable counts, we examined the fate of cells of Vibrio vulnificus placed into natural estuarine waters during both winter and summer months. Cells inoculated into membrane diffusion chambers and placed into estuarine waters entered into a viable but nonculturable (VBNC) state in January and February, when the water temperatures were low (average, < 15 degrees C). In contrast, when cells in the VBNC state were placed into the same waters in the warmer months of August through November (average water temperature of ca. 21 degrees C), the cells appeared to undergo a rapid (typically, within 24 h) resuscitation to the fully culturable state. These results were independent of whether the cells were in the logarithmic or stationary phase and whether they were encapsulated or not. This study indicates that the inability to isolate V. vulnificus from cold estuarine sites may be accounted for by entrance of the cells into a VBNC state and that recovery from this state in natural environments may result from a temperature upshift.  相似文献   

14.
《Process Biochemistry》2010,45(5):706-713
Photorhabdus temperata ssp. temperata strain K122 represents a promising source of bioinsecticide. When cultured in an optimized medium, P. temperata exhibited restricted survival in terms of colony-forming ability on solid medium, which remained lower than the total cell counts. Membrane integrity assessment by flow cytometry showed that almost 100% of P. temperata cells were viable indicating that this bacterium enters in the viable but nonculturable state (VBNC). According to the double staining results, hydrogen peroxide was demonstrated to be responsible of P. temperata VBNC state. Addition of catalase or sodium pyruvate upon the inoculation of P. temperata on agar plates promoted the recovery of nonculturable cells up to 24 h incubation. Further, growth at high cell density enhanced the VBNC state of this bacterium. This should evidenced extracellular signals accumulation involved in quorum sensing mechanism. Elucidation of this state is interesting for both toxicity study and production of P. temperata useful as bioinsecticide.  相似文献   

15.
We have determined that concentrations of copper considered to be toxic can induce a fraction of a population of Escherichia coli to enter the viable but nonculturable (VBNC) condition. Copper-induced VBNC cells could be resuscitated for up to 2 weeks after entering the VBNC state.  相似文献   

16.
Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu(2+) was inoculated with 10(7) CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper.  相似文献   

17.
Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at 4°C in modified ASM (mASM), while it was stably maintained at 25°C in mASM. We hypothesized that bacterial cells at 4°C in mASM are viable but nonculturable. Total protein profiles of SL341 cells at 4°C in mASM did not differ from those of SL341 culturable cells at 25°C in mASM. Moreover, the VBNC cells maintained in the mASM retained respiration activity. Catalase treatment effectively restored the culturability of nonculturable cells in mASM, while temperature increase or other treatments used for resuscitation of other bacteria were not effective. The resuscitated R. solanacearum from VBNC state displayed normal level of bacterial virulence on tomato plants compared with its original culturable bacteria. Expression of omp, oxyR, rpoS, dps, and the 16S rRNA gene quantified by RT-qPCR did not differ significantly between the culturable and VBNC states of R. solanacearum. Our results suggested that the VBNC bacterial cells in mASM induced by low temperature exist in a physiologically unique state.  相似文献   

18.
Late-exponential-phase cells of Escherichia coli O157:H- strain E32511/HSC became nonculturable in sterilized distilled water microcosms at 4 °C. Plate counts declined from 3 × 106 to less than 0.1 CFU/ml in about 21 days. However, when samples of microcosms at 21 days were inoculated onto an agar medium amended with catalase or nonenzyme peroxide-degrading compounds such as sodium pyruvate or α-ketoglutaric acid, plate counts increased to 104–105 CFU/ml within 48 h. The proposed mode of action of the catalase or pyruvate is via the degradation of the metabolic by-product H2O2, rather than through supplementation of a required nutrient in the recovery of nonculturable cells. Our studies were based on the assumption that E32511/HSC strain responds to starvation and a low temperature by entering a nonculturable state and that the correction of oxidative stress upon the inoculation of bacteria on agar plates promotes recovery of nonculturable cells. Received: 15 January 1999 / Accepted: 8 April 1999  相似文献   

19.
Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health.  相似文献   

20.
The role of the dormant-like viable but nonculturable (VBNC) condition in the etiology of bacterial infection was examined using a plant system. The plant-pathogenic bacterium Ralstonia solanacearum was first shown to enter into the VBNC state both in response to cupric sulfate when in a saline solution and when placed in autoclaved soil. To determine if the VBNC condition is related to pathogenesis, the physiological status of bacteria recovered from different regions of inoculated tomato plants was determined at different stages of infection. The fraction of in planta bacteria that were VBNC increased during infection and became greater than 99% by the late stage of disease. The possibility that soil-dwelling VBNC bacteria may resuscitate and infect plants was also examined. When tomato seeds were germinated in sterile soil that contained VBNC but no detectable culturable forms of R. solanacearum cells, resuscitation was observed to occur in soil adjacent to plant roots; these resuscitated bacteria were able to infect plants. This is the first report of R. solanacearum entering the VBNC state and of resuscitation of any VBNC plant-pathogenic bacteria and provides evidence that the VBNC state may be involved in explaining the persistent nature of some infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号