首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the atp8 gene was cloned from the cytoplasmic male sterile (CMS) line UG93A and its maintainer line UG93B in kenaf. Its DNA sequence analysis showed that atp8 containing 480-bp, encoding 159 amino acid residues, and a 9-bp insertion was found at the 3′flanking sequence in UG93A compared with UG93B. The cDNA sequence of atp8 analyzed by RT-PCR indicated that there were five loci edited, but six loci edited in UG93B. The editing frequencies were higher in sterile cytoplasm than in fertile cytoplasm. The relative expression of atp8 analyzed by real-time PCR showed that the expressed level of atp8 in UG93A was lower than that of its maitainer UG93B and its F1 hybrid UG93A/992 (a restore line). Furthermore, based on the difference of the 9-bp differences at the 3′flanking sequence of atp8 between UG93A and UG93B, a molecular marker specific to male sterile cytoplasm was developed, which can be used for indentifying whether any germplasm of kenaf is male sterile cytoplasm or male fertile cytoplasm.  相似文献   

2.
3.
段继强  杜光辉  李建永  梁雪妮  刘飞虎 《遗传》2008,30(11):1487-1498
摘要: 根据GenBank报道的双子叶植物线粒体atp6和atp9基因编码区保守序列设计简并引物, 通过PCR技术从苎麻细胞质雄性不育系、保持系和恢复系(简称“三系”) mtDNA中扩增目的基因片段, 发现所得序列开放阅读框虽不完整, 但与GenBank报道的其他植物线粒体atp6和atp9基因同源性分别高于94%和85%。采用DNA Walking步移法分别从3′端和5′端扩增两个基因片段的未知侧翼序列, 分离出完整的苎麻线粒体atp6和atp9基因, 包含了完整的开放阅读框。其中“三系”的atp6基因在mtDNA水平、转录和翻译调控水平、蛋白质水平上均无差异。不育系atp9基因在编码区3′端与保持系和恢复系相比存在若干个碱基的差异和缺失; RT-PCR分析还表明, 不育系atp9基因在现蕾期和盛花期的表达量很高。推测不育系atp9基因的结构变异和/或异常表达与苎麻细胞质雄性不育(CMS)的关系密切。  相似文献   

4.
Molecular markers, coxII SCAR, atp6-2 SCAR and accD-U, have been used for marker-assisted selection of cytoplasmic male sterility (CMS) in pepper. However, the presence of these markers at the sub-stoichiometric level in maintainer lines affects the reliable selection of male sterile (S-) cytoplasm. This study aimed to develop a new CMS-specific molecular marker, SCAR130, for reliable identification of S-cytoplasm in pepper, while the new and three previous molecular markers were used to determine the cytoplasm types of pepper lines. Based on mitochondrial genome sequence related amplified polymorphism (SRAP) analysis of the CMS lines and the maintainer lines, SCAR130 was developed from a 10-bp deletion at the SRAP primer binding site in the CMS line (130 bp) compared with that in the maintainer line (140 bp). S-cytoplasm could be unambiguously selected from the pepper lines by the different length of the marker bands. Application of the four molecular markers to various pepper lines revealed that SCAR130 is more reliable than the other three previous markers, orf507, ψatp6-2 and accD-U. Homology alignment with BLAST showed that the marker was located between trnE and trnS in the Nicotiana tabacum mitochondrial genome. Furthermore, expression of the marker-linked gene was significantly higher at the pollen abortive stage in the CMS line (HW203A) than in the maintainer line, which indicated that the marker was closely related to male sterility. Hence, factors other than orf507 and ψatp6-2 may exist for the regulation of male sterility in pepper.  相似文献   

5.
6.
7.
8.
Molecular markers developed from the flanking sequences of two cytoplasmic male sterility (CMS)-associated genes, orf456 and ψatp6-2, have been used for marker-assisted selection of CMS in pepper. However, in practice, the presence of orf456 and ψatp6-2 at substoichiometric levels even in maintainer lines hampers reliable selection of plants containing the CMS gene. In this study, we developed a novel CMS-specific molecular marker, accD-U, for reliable determination of CMS lines in pepper, and used the newly and previously developed markers to determine the cytoplasm types of pepper breeding lines and germplasms. This marker was developed from a deletion in a chloroplast-derived sequence in the mitochondrial genome of a CMS pepper line. CMS pepper lines could be unambiguously determined by presence or absence of the accD-U marker band. Application of orf456, ψatp6-2 and accD-U to various pepper breeding lines and germplasms revealed that accD-U is the most reliable CMS selection marker. A wide distribution of orf456, but not ψatp6-2, in germplasms suggests that the pepper cytoplasm containing both orf456 and ψatp6-2 has been selected as CMS cytoplasm from cytoplasm containing only orf456. Furthermore, factors other than orf456 may be required for the regulation of male sterility in pepper.  相似文献   

9.
Comparison of the physical maps of male fertile (cam) and male sterile (pol) mitochondrial genomes of Brassica napus indicates that structural differences between the two mtDNAs are confined to a region immediately upstream of the atp6 gene. Relative to cam mtDNA, pol mtDNA possesses a 4.5 kb segment at this locus that includes a chimeric gene that is cotranscribed with atp6 and lacks an approximately 1kb region located upstream of the cam atp6 gene. The 4.5 kb pol segment is present and similarly organized in the mitochondrial genome of the common nap B.napus cytoplasm; however, the nap and pol DNA regions flanking this segment are different and the nap sequences are not expressed. The 4.5 kb CMS-associated pol segment has thus apparently undergone transposition during the evolution of the nap and pol cytoplasms and has been lost in the cam genome subsequent to the pol-cam divergence. This 4.5 kb segment comprises the single DNA region that is expressed differently in fertile, pol CMS and fertility restored pol cytoplasm plants. The finding that this locus is part of the single mtDNA region organized differently in the fertile and male sterile mitochondrial genomes provides strong support for the view that it specifies the pol CMS trait.  相似文献   

10.
A maintainer line of 3-line hybrid rice commonly presents a certain genetic distance to a 2-line restorer line, but in many cases, 2-line restorer lines present defects upon recovery of the object cytoplasmic male sterile (CMS) line of the maintainer line, which impedes the utilization of their heterosis. Here, we report a strategy and an example of converting a maintainer into a photoperiod/temperature-sensitive genic male sterile (P/TGMS) line with an almost identical genetic background, thus maximizing the heterosis. Firstly, through treatment of maintainer line T98B with 60CO-γ irradiation, we identified the TGMS line T98S, which is sterile at higher temperatures and fertile at lower temperatures. Secondly, the T98S line was proven to be identical to T98B with regard to genetic background via an examination of 48 parental polymorphous SSR markers and exhibited excellent blossom traits similar to those of T98B, with an extensive forenoon flowering rate of 75.92% and a high exertion rate of 64.59%. Thirdly, in a combination test, three out of six hybrids from T98S crossed with 2-line restorer lines showed a yield increase of 6.70–15.69% for 2 consecutive years. These results demonstrated that the strategy can generate a new P/TGMS line with strong general combining ability (converted from a maintainer line), thus helping to increase the genetic diversity of male sterile heterotic groups.  相似文献   

11.
Twelve Japanese rice cultivars were converted to CMS by asymmetric protoplast fusion with MTC-5A, the cytoplasm of which was derived from an indica rice, Chinsurah Boro II. With the exception of the cybrids that had a nucleus from Hoshiyutaka, most of these cybrid plants were sterile. The unique sequence downstream from the mitochondrial atp6 of MTC-5A was specifically amplified in the sterile cybrid plants by PCR. All progenies of the cybrid plants carrying this unique sequence were sterile. On the other hand, in some of the sterile cybrid plants in which the unique sequence was not amplified by PCR, fertility was recovered in their progenies. Somaclonal mutation may have caused sterility in these cybrids. Only the cybrid plants that had the unique sequence detected by PCR were CMS. Thus, the CMS plants can be selected rapidly and easily by PCR, at an early stage of plant regeneration. Soon after transplanting the regenerated plants to a green house, fertile cybrids and sterile cybrids produced by somaclonal mutation can be removed. These findings also show that the unique region downstream from atp6 is tightly linked with the CMS phenotype.  相似文献   

12.
13.
14.
利用8条核基因组ISSR引物和7对叶绿体基因组SSR引物(cpSSR),对9对红麻UG93细胞质雄性不育系/保持系及5个恢复系的细胞核、细胞质遗传多样性进行分析.结果表明:各材料的核基因组遗传相似系数在0.333~1.000之间,其中保持系间、保持系和恢复系间、恢复系间的平均相似系数分别为0.583、0.689和0.8...  相似文献   

15.
16.
17.

Background

Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288.

Results

Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line “J163-4” are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity.

Conclusion

The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the mechanism of natural CMS in B. juncea, performing comparative analysis on sequenced mitochondrial genomes in Brassicas, and uncovering the origin of the hau CMS mitotype and structural and evolutionary differences between different mitotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-322) contains supplementary material, which is available to authorized users.  相似文献   

18.
Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号