首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
褚鑫  王力为  许虹  张燕飞 《生物工程学报》2022,38(11):4019-4026
随着石化资源逐步消耗,气候问题日益凸显,工业生物技术被认为是解决能源和资源供给、应对气候变化、实现绿色可持续发展的重要方向。得益于理论突破、技术变革和学科交叉,工业生物技术主要经历了由生命科学突破性成就、多学科技术理念交汇融合和产业应用导向推动的3个阶段。本文回顾总结了工业生物技术的发展历程及近年来取得的重要突破,并展望了其未来发展方向。  相似文献   

2.
Since 2007, the overall rise in food prices in the USA was twice that of the overall inflation rate, led by inflation for poultry and dairy products in particular. Prominent studies have indicated that the main drivers associated with the rise in food prices in the past 3 yr are the increased energy costs (and the trickle-down impact on farm input costs) and the devaluation of the US dollar. However, currently, the impact of crude oil as one of the primary drivers in food prices has waned significantly, as crude oil prices have fallen dramatically since late 2008. The data reviewed here debunk the popular myth that food producers, particularly farmers growing corn or soybean for biofuel feedstocks, are making huge profits with high commodity prices. Producers continue to face extraordinary risks in their farming operations, and profit margins have narrowed considerably because of the high input prices driven by high energy costs. One of the primary solutions to the food price inflation is to increase the supply of commodity crops in a responsible way that is both respectful and sustainable regarding economic, social, and environmental aspects. At the center of this solution is implementing and developing new technologies to increase crop yields and nutritional values without increasing the amount of fossil-based inputs used in agriculture. Conventional breeding, molecular breeding, genomics, and biotechnology are pivotal technologies for increasing crop yields to meet these supply needs, combined with the impacts of other new technologies and best management practices in agricultural production.  相似文献   

3.
Peach palm (Bactris gasipaes) is a multi-purpose palm tree native to tropical Latin America, which is predominantly cultivated by smallholders in agroforestry systems. The fruits are rich in starch and contribute importantly to food security and the cash income of farmers who cultivate them. Complex value chains have emerged that link producers to consumers, but irregular product quality and market chain inequalities undermine the economic well-being of producers and retailers. Peach palm is genetically diverse, but screening for traits of commercial and nutritional interest is required to enhance the use of its genetic resources. Alliances between public organizations and private enterprises are needed to realize the potential for processing novel products from peach palm, especially in the pharmaceutical and cosmetic sectors. The diverse challenges that emerge at different stages of production, processing and marketing require participatory research that directly involves stakeholders from the beginning.  相似文献   

4.
1,3-丙二醇(1,3-PD)是一种重要的化工原料,广泛应用于医药、化工、食品及化妆品等行业,同时1,3-PD是合成聚对苯二甲酸丙二酯(PTT)的重要单体,市场需求量逐年增多。基于生态友好型、生产安全和可持续发展的要求,利用微生物转化可再生资源来生产1,3-PD受到了人们的广泛重视。综述了微生物发酵法生产1,3-PD的菌株、代谢途径、发酵和下游分离工艺及其新进展,并对工业生产中利用生物技术生产1,3-PD的未来前景和挑战进行了探讨。  相似文献   

5.
《Small Ruminant Research》2008,78(2-3):174-194
In the low-rainfall areas of much of Africa and Asia, small ruminants represent the principal economic output, contributing a large share of the income of farmers. Animal numbers have increased over the last two decades, driven by a rising demand for animal products and subsidized feed price (e.g. barley, maize). Side effects of this and changing climatic patterns are increasing desertification, resulting in a decline in rangeland resources, which are often insufficient to meet current demand, coupled with a fall in total feed resources due to overgrazing, ploughing of marginal land and soil erosion. Consequently, goats and sheep are facing serious nutrient shortages. These animals often depend on low quality crop residues (e.g. straws, stubbles) and expensive feed supplements. Technical solutions to some of these problems are available, for example the advantageous use of fodder trees, shrubs and cactus has been demonstrated. Conservation through ensiling and the use of feed blocks (FB) gives greater efficiency of use of a wide range of agro-industrial by-products (AGIBPs). But their adoption has been slow, often because of lack of knowledge of the farmers’ problems and expectations. Adaptive research of technologies and management practices are needed, to provide the policy and institutional support for wider adoption of improved production and resource management practices. Some research–development projects based on the farmer participatory approach have resulted in improved crop and livestock technologies being introduced. On-farm surveys and in-depth economic analyses have shown that these pioneer projects have contributed significantly to the welfare of farmers in dry areas. The lesson learned from these projects is that “by working hand-in-hand with rural communities, agricultural researchers and extension specialists, it should be possible to refine and promote technologies and policies that might help ensure sustainable livelihoods and enhance the productive capacity of drylands everywhere”. Success stories of technology transfer projects include the Mashreq and Maghreb project (International Center for Agricultural Research in the Dry Areas [ICARDA]-coordinated project).  相似文献   

6.
土壤是农业生产的基础,是人类赖以生存的基石,也是人类食物与生态环境安全的保障。土壤学是解决人口-资源-环境-粮食矛盾的重要学科之一。广东土壤科学发展历史悠久,在食物安全、环境保护、减少贫困、退化土地恢复重建和生态系统稳定性维持等事关全省发展方面取得了许多重要的成绩,但目前我省面临着人均耕地面积少、后备土壤资源匮乏、土壤肥力下降、土壤环境日趋恶化以及水土流失依然严重等问题,因此我省土壤科学研究也将从生产农学和基础土壤发生学拓展到包括高效持续农业生产、土壤变化与全球气候变化相互关系、土壤可持续利用、数字化与信息化土壤、土壤污染监测及其修复等多功能的研究领域。  相似文献   

7.
Is Yield Increase Sufficient to Achieve Food Security in China?   总被引:3,自引:0,他引:3  
Increasing demand for food, driven by unprecedented population growth and increasing consumption, will keep challenging food security in China. Although cereal yields have substantially improved during the last three decades, whether it will keep thriving to meet the increasing demand is not known yet. Thus, an integrated analysis on the trends of crop yield and cultivated area is essential to better understand current state of food security in China, especially on county scale. So far, yield stagnation has extensively dominated the main cereal-growing areas across China. Rice yield is facing the most severe stagnation that 53.9% counties tracked in the study have stagnated significantly, followed by maize (42.4%) and wheat (41.9%). As another important element for production sustainability, but often neglected is the planted area patterns. It has been further demonstrated that the loss in productive arable land for rice and wheat have dramatically increased the pressure on achieving food security. Not only a great deal of the planted areas have stagnated since 1980, but also collapsed. 48.4% and 54.4% of rice- and wheat-growing counties have lost their cropland areas to varying degrees. Besides, 27.6% and 35.8% of them have retrograded below the level of the 1980s. The combined influence (both loss in yield and area) has determined the crop sustainable production in China to be pessimistic for rice and wheat, and consequently no surprise to find that more than half of counties rank a lower level of production sustainability. Therefore, given the potential yield increase in wheat and maize, as well as substantial area loss of rice and wheat, the possible targeted adaptation measures for both yield and cropping area is required at county scale. Moreover, policies on food trade, alongside advocation of low calorie diets, reducing food loss and waste can help to enhance food security.  相似文献   

8.
In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.  相似文献   

9.
Ronald P 《Genetics》2011,188(1):11-20
The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.  相似文献   

10.
To ensure a sustainable food supply for the growing population, the challenge is to find agricultural systems that can meet production requirements within environmental constraints and demands. This study compares the impacts of winter wheat production on energy use, land use and 100 years Global Warming Potential (GWP100) under different arable farming systems and farming practices. Life cycle assessment was used to simulate the impacts of organic, conventional and integrated farming (IF) systems along the production chain from input production up to the farm gate. The IF system models were designed to combine the best practices from organic and conventional systems to reduce negative environmental impacts without significant yield reductions. An integrated system that used food waste digestate as a fertiliser, and utilised pesticides and no‐tillage had the lowest energy use and GWP per functional unit of 1000 kg wheat output. When the impacts of some specific practices for reducing energy use and GWP were compared, the highest energy use reductions were achieved by replacing synthetic nitrogen fertilisers with anaerobically treated food waste or nitrogen fixing crops, increasing yields through crop breeding and using no‐tillage instead of ploughing. The highest GWP reductions were achieved by using nitrification inhibitors, replacing synthetic nitrogen fertilisers and increasing yields. The major contributors to the uncertainty range of energy use were associated with machinery fuel use and the assumed crop yields. For GWP results, the main source of uncertainty related to the N2O emissions. In conclusion, farming systems that combine the best practices from organic and conventional systems have potential to reduce negative environmental impacts while maintaining yield levels.  相似文献   

11.
Trees have a different impact on soil properties than annual crops, because of their longer residence time, larger biomass accumulation, and longer-lasting, more extensive root systems. In natural forests nutrients are efficiently cycled with very small inputs and outputs from the system. In most agricultural systems the opposite happens. Agroforestry encompasses the continuum between these extremes, and emerging hard data is showing that successful agroforestry systems increase nutrient inputs, enhance internal flows, decrease nutrient losses and provide environmental benefits: when the competition for growth resources between the tree and the crop component is well managed. The three main determinants for overcoming rural poverty in Africa are (i) reversing soil fertility depletion, (ii) intensifying and diversifying land use with high-value products, and (iii) providing an enabling policy environment for the smallholder farming sector. Agroforestry practices can improve food production in a sustainable way through their contribution to soil fertility replenishment. The use of organic inputs as a source of biologically-fixed nitrogen, together with deep nitrate that is captured by trees, plays a major role in nitrogen replenishment. The combination of commercial phosphorus fertilizers with available organic resources may be the key to increasing and sustaining phosphorus capital. High-value trees, ''Cinderella'' species, can fit in specific niches on farms, thereby making the system ecologically stable and more rewarding economically, in addition to diversifying and increasing rural incomes and improving food security. In the most heavily populated areas of East Africa, where farm size is extremely small, the number of trees on farms is increasing as farmers seek to reduce labour demands, compatible with the drift of some members of the family into the towns to earn off-farm income. Contrary to the concept that population pressure promotes deforestation, there is evidence that demonstrates that there are conditions under which increasing tree planting is occurring on farms in the tropics through successful agroforestry as human population density increases. <br>  相似文献   

12.
Future agricultural and rural development is, to a large extent, influenced by the projected food needs of 2.5 billion people expected to swell the world population by 2020. This increase will require more food in general and, in view of recent experience in East Asia, more animal products. To achieve this increase will require judicious use of resources, and trade, especially in those countries where natural resources are insufficient to support food production. Achieving food sufficiency in a sustainable manner is a major challenge for farmers, agro-industries, researchers and governments. The latter play an important role as many of the farmers' choices are, to a large extent, directed by government or supra-government, often through macro- and micro-economic policy. In many countries the economic, environmental, trade and agricultural policies have not been conducive to an agricultural development that is risk-free with respect to the environment, animal welfare or public health. The recent decline of government support in agriculture forced farmers in Western countries to think about more risk adverse agricultural practices and more efficient production systems. On the other hand, many countries in Eastern Europe and the former Soviet Union, as well as other developing countries, are still going through a painful process of adjustment to new market conditions. International banks and development agencies have a mandate to help developing countries, but are somewhat restricted both by needing to work directly with governments and by their perceived dogmatic approach to development. Changing policies do, now and in the future, also affect the development of animal disease control programmes, including the control of parasitic diseases. On the one hand there is an increasing interest in risk-free control practices, and on the other hand a demand for greater regulatory control over the production process. As parasitic diseases of animals are closely linked to the environment (i.e. grazing and waste management) and public health (i.e. parasitic zoonoses), the new interest in sustainable agriculture provides a challenge for those concerned with the control and prevention of animal parasitism.  相似文献   

13.
Are insects the farm animal of the future? A key agenda for agricultural production systems is the development of sustainable practices whereby food and feed can be produced in an environmentally efficient manner. These goals require novel approaches to complex problems and demand collaboration between scientists, producers, consumers, government and the general population. The provision of feed for animals is a major contributor to land and water use and greenhouse gas (GHG) emissions. Further, overfishing and a reduction in available land and water resources on which crops can be grown has led to an increase in price of protein ingredients such as fish meals and oils and soybean meals. Determination of novel solutions to meet the feed protein requirements of production animals is key to the development of sustainable farming practices. The Australian pork industry aims to develop production systems that efficiently use available resources (such as feed and energy) and limit the production of emissions (such as manure waste and GHGs). Invertebrates (insects e.g. black soldier flies) are naturally consumed by monogastric and aquatic species, yet the large-scale production of insects for feed (or food) is yet to be exploited. Most insects are low producers of GHGs and have low land and water requirements. The large-scale production of insects can contribute to a circular economy whereby food and feed waste (and potentially manure) are reduced or ideally eliminated via bioconversion. While the concept of farm-scale production of insects as domestic animal feed has been explored for decades, significant production and replacement of traditional protein sources has yet to be achieved. This review will focus on the potential role of insect-derived protein as a feed source for the Australian pig production industry.  相似文献   

14.
中尼廊道地区作为南亚通道建设的关键环节,具有生态环境脆弱且对生态资源依赖性强的基本特征,中尼廊道建设占用生态空间,将增加生态系统对农牧业生产活动的承载压力;因此,开展中尼廊道生态承载力研究对青藏高原生态保护和南亚通道建设具有重要的实践价值和指导意义。本文基于生态供给与消耗平衡关系,通过计算农牧业生产对生态系统净初级生产力的消耗,评估中尼廊道地区的生态承载力,结果表明:(1)中尼廊道地区生态承载力处于富富有余状态,2015年有7个县域生态承载力处于临界超载或平衡有余状态;整体上生态系统尚有较大的生态空间来支撑中尼廊道建设,但建设可能給局部县域带来超载风险。(2)中尼廊道地区生态系统供给量处于稳定波动状态,畜牧业生态消耗在生态消耗中占主导地位(占比超80%);得益于2005年起实施的草畜平衡政策,中尼廊道地区及其24个县域生态消耗量呈下降趋势,农牧业生产活动对生态系统造成的压力降低,生态承载状态向优发展;但地处粮食主产区、口岸区、城市化辐射区的7个县域,在本地及周边地区日益增长的对农牧业产品的生活需求驱动下生态消耗量处于增加态势。(3)若以实现生物多样性公约所倡导的50%生态资源得到保护为生态保护目标,目前中尼廊道农牧业生产模式产生的生态消耗将超出其可利用供给,区域可持续发展需要关注如何通过中尼廊道建设带动当地产业结构调整以缓解农牧业生产对生态系统的压力。  相似文献   

15.
中国绿色食品产业化发展的理论与实践   总被引:6,自引:0,他引:6  
李显军  吴文良  李志芳 《生态学杂志》2005,24(12):1513-1519
对天津蓟县国家级绿色食品生产示范区和国家级龙头企业草原兴发集团进行案例研究,得出绿色食品产业化经营的基本框架结构及其理论依据。绿色食品产业化的基本框架是由农产品生产、加工企业、农户、市场销售部门等组成,各部分之间存在特定的、相互依存的经济技术关系,共同构成统一的产业结构体系。在农业产业化、农业可持续发展、绿色经济、绿色营销、市场经济、以及农业生态学等理论与原理的指导下,该体系以市场为导向,以提高经济效益为中心,按照“市场牵龙头,龙头带基地、基地联农户”的形式,优化组合各生产要素,实行区域化布局、专业化生产、一体化经营、社会化服务、企业化管理。实现了资源持续利用和生态环境优化,从而获得最佳的社会、经济、生态综合效益,有利于提高中国农业的综合生产能力和出口能力。  相似文献   

16.
Studies of the genomes of individual microbial organisms as well as aggregate genomes (metagenomes) of microbial communities are expected to lead to advances in various areas, such as healthcare, environmental cleanup, and alternative energy production. A variety of specialized data resources manage the results of different microbial genome data processing and interpretation stages, and represent different degrees of microbial genome characterization. Scientists studying microbial genomes and metagenomes often need one or several of these resources. Given their diversity, these resources cannot be used effectively without determining the scope and type of individual resources as well as the relationship between their data.  相似文献   

17.
The food-feed competition is one of the complex challenges, and so are the ongoing climate change, land degradation and water shortage for realizing sustainable food production systems. By 2050 the global demand for animal products is projected to increase by 60% to 70%, and developing countries will have a lion’s share in this increase. Currently, ~800 million tonnes of cereals (one-third of total cereal production) are used in animal feed and by 2050 it is projected to be over 1.1 billion tonnes. Most of the increase in feed demand will be in developing countries, which already face many food security challenges. Additional feed required for the projected increased demand of animal products, if met through food grains, will further exacerbate the food insecurity in these countries. Furthermore, globally, the production, processing and transport of feed account for 45% of the greenhouse gas emissions from the livestock sector. This paper presents approaches for addressing these challenges in quest for making livestock sector more sustainable. The use of novel human-inedible feed resources such as insect meals, leaf meals, protein isolates, single cell protein produced using waste streams, protein hydrolysates, spineless cactus, algae, co-products of the biofuel industry, food wastes among others, has enormous prospects. Efficient use of grasslands also offers possibilities for increasing carbon sequestration, land reclamation and livestock productivity. Opportunities also exist for decreasing feed wastages by simple and well proven practices such as use of appropriate troughs, increase in efficiency of harvesting crop residues and their conversion to complete feeds especially in the form of densified feed blocks or pellets, feeding as per the nutrient requirements, among others. Available evidence have been presented to substantiate arguments that: (a) for successful and sustained adoption of a feed technology, participation of the private sector and a sound business plan are required, (b) for sustainability of the livestock production systems, it is also important to consider the consumption of animal products and a case has been presented to assess future needs of animal source foods based on their requirements for healthy living, (c) for dairy animals, calculation of Emission Intensity based on the lifetime lactation rather than one lactation may also be considered and (d) for assessment of the efficiency of livestock production systems a holistic approach is required that takes into consideration social dimensions and net human-edible protein output from the system in addition to carbon and water footprints.  相似文献   

18.
The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.  相似文献   

19.
广西灵川县种植业的可持续发展   总被引:1,自引:0,他引:1  
广西是我国南方农业大省(区),明确其农业发展的制约因素,提出具体的解决措施,实现农业可持续发展,对解决农业、农村和农民问题,促进经济持续、快速、健康发展,实现社会主义现代化建设战略目标具有重要的理论和现实意义。主要采用了参与性农户评估方法(PRA),通过随机入户方式,与农户面对面交流,并结合调查问卷,对广西桂林市灵川县11个乡镇的农户进行了调查访问,为方便研究和数据处理,在数据分析过程中将该县11个乡镇分为3个片区:东部片区、中部片区、北部片区,对比3组农户的文化素质、种植制度、冬季农业现状、农业需求和农田水利设施等方面问题,探讨广西农业可持续发展的制约因素,并提出相应的对策,以期为广西农业可持续发展提供理论依据。调查结果表明,虽然目前灵川县农业取得众多发展成就,但仍存在以下几个方面的问题,严重影响了该县种植业可持续发展的进程。一是种植制度结构单一,二是冬季农业发展薄弱,三是种植技术贫乏,四是基础设施建设不完善等,因此,为促进灵川县种植业可持续发展,亟需采取以下对策和措施:调整作物种植结构,建立合理的种植制度;大力发展冬季农业;满足农民最迫切的农业需求;加强农业基础设施建设等。  相似文献   

20.
Genomics, molecular genetics and the food industry   总被引:2,自引:0,他引:2  
The production of foods for an increasingly informed and selective consumer requires the coordinated activities of the various branches of the food chain in order to provide convenient, wholesome, tasty, safe and affordable foods. Also, the size and complexity of the food sector ensures that no single player can control a single process from seed production, through farming and processing to a final product marketed in a retail outlet. Furthermore, the scientific advances in genome research and their exploitation via biotechnology is leading to a technology driven revolution that will have advantages for the consumer and food industry alike. The segment of food processing aids, namely industrial enzymes which have been enhanced by the use of biotechnology, has proven invaluable in the production of enzymes with greater purity and flexibility while ensuring a sustainable and cheap supply. Such enzymes produced in safe GRAS microorganisms are available today and are being used in the production of foods. A second rapidly evolving segment that is already having an impact on our foods may be found in the new genetically modified crops. While the most notorious examples today were developed by the seed companies for the agro-industry directed at the farming sector for cost saving production of the main agronomical products like soya and maize, its benefits are also being seen in the reduced use of herbicides and pesticides which will have long term benefits for the environment. Technology-driven advances for the food processing industry and the consumer are being developed and may be divided into two separate sectors that will be presented in greater detail: 1. The application of genome research and biotechnology to the breeding and development of improved plants. This may be as an aid for the cataloging of industrially important plant varieties, the rapid identification of key quality traits for enhanced classical breeding programs, or the genetic modification of important plants for improved processing properties or health characteristics. 2. The development of advanced microorganisms for food fermentations with improved flavor production, health or technological characteristics. Both yeasts and bacteria have been developed that fulfill these requirements, but are as yet not used in the production of foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号