首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. G. Nicieza 《Oecologia》2000,123(4):497-505
Age and size at metamorphosis are two important fitness components in species with complex life cycles. In anurans, metamorphic traits show remarkable phenotypic plasticity, especially in response to changes in growth conditions. It is also possible that the perception of risk directly determines changes in larval period and the size of metamorphs. This study examines how the perception of predation risk affects the timing of and size at metamorphosis in common frogs (Rana temporaria). I raised tadpoles at two risk levels (fish-conditioned water or unconditioned water) crossed with the availability or lack of food at night (all tadpoles had food available in the day). Tadpoles reacted to chemical cues from predatory fish by decreasing activity. A novel behavioural result was a predation×food interaction effect on refuge use, which also accounted for most of the predator main effect: predation risk only caused increased refuge use in the night-starved treatment. Despite these behavioural modifications, the perception of predation risk did not affect growth rate and mass at metamorphosis in a simple way: the effects of food regime on growth and size at metamorphosis were dependent on the level of predation risk as revealed by significant predation×food interaction effects. Tadpoles who had food withheld at night metamorphosed at the smallest size, suggesting a negative relationship between size at metamorphosis and refuge use. Tadpoles raised in fish-conditioned water had longer larval periods than those in unconditioned water, but these differences were significant only if food was available at night. These results conflict with the hypotheses that tadpoles should reduce their larval period or growth rates (and hence metamorphose at a smaller size) as the risk of predation increases. In contrast to predation risk, food availability strongly affected the length of the larval period: night-starved tadpoles metamorphosed relatively early with or without fish stimulus. Thus, early metamorphosis resulted from periods of low food availability, but not from a heightened ”perceived risk” of predation. This example counters the hypothesis of acceleration of the developmental rate (which shortens the time to metamorphosis) as a mechanism to escape a risky environment. Received: 18 August 1999 / Accepted: 10 January 2000  相似文献   

2.
Wu CS  Gomez-Mestre I  Kam YC 《Oecologia》2012,169(1):15-22
Harsh environments experienced early in development have immediate effects and potentially long-lasting consequences throughout ontogeny. We examined how salinity fluctuations affected survival, growth and development of Fejervarya limnocharis tadpoles. Specifically, we tested whether initial salinity effects on growth and rates of development were reversible and whether they affected the tadpoles’ ability to adaptively accelerate development in response to deteriorating conditions later in development. Tadpoles were initially assigned to either low or high salinity, and then some were switched between salinity levels upon reaching either Gosner stage 30 (early switch) or 38 (late switch). All tadpoles initially experiencing low salinity survived whereas those initially experiencing high salinity had poor survival, even if switched to low salinity. Growth and developmental rates of tadpoles initially assigned to high salinity did not increase after osmotic stress release. Initial low salinity conditions allowed tadpoles to attain a fast pace of development even if exposed to high salinity afterwards. Tadpoles experiencing high salinity only late in development metamorphosed faster and at a smaller size, indicating an adaptive acceleration of development to avoid osmotic stress. Nonetheless, early exposure to high salinity precluded adaptive acceleration of development, always causing delayed metamorphosis relative to those in initially low salinity. Our results thus show that stressful environments experienced early in development can critically impact life history traits, having long-lasting or irreversible effects, and restricting their ability to produce adaptive plastic responses.  相似文献   

3.
Larvae of holometabolous insects must determine the timing of their metamorphosis. How they determine this timing has only been studied in detail for a few insect species. In a few species of Coleoptera, starvation is known to be a cue for metamorphosis, leading to the formation of smaller adults (starvation-induced pupation, SiP). We investigated the occurrence of SiP in the beetle Psacothea hilaris. When P. hilaris larvae were starved late in the feeding phase of the last (5th) instar, they exhibited typical SiP characterized by constancy of the time from food deprivation to pupation (TTP) irrespective of the body weight upon food deprivation or the length of prior feeding. In contrast, when larvae were starved early in the feeding phase, TTP decreased by roughly 1 day as the feeding became 1 day longer. The change in the response to starvation was estimated to occur on day 5.9 in the last instar. A series of refeeding experiments suggested that whereas SiP occurred readily in the larvae starved in the late feeding phase, activation of SiP was suspended until day 5.9 in the larvae starved early in the feeding phase. When P. hilaris larvae were fed continuously, they eventually ceased feeding spontaneously and pupated. The time length between spontaneous cessation of feeding and pupation was approximately equal to the TTP in SiP. This suggests that the same mechanism was activated by food deprivation in the late feeding phase and by spontaneous cessation of ad libitum feeding.  相似文献   

4.
Many animals modify their behavior toward unfamiliar conspecifics as a function of their genetic relatedness. A fundamental problem of any kin recognition study is determining what is being recognized and why. For anuran tadpoles, the predominant view is that associating with relatives is kin-selected because these relatives may thereby accrue benefits through increased growth or predation avoidance. An alternative view is that kin associations are simply a side-effect of habitat selection and thus do not represent attempts to identify kin per se. In the laboratory, spadefoot toad tadpoles (Scaphiopus multiplicatus) preferentially associated with unfamiliar siblings over unfamiliar nonsiblings, as do other anurans. However, same age tadpoles also were more likely to orient toward unfamiliar nonsiblings reared on the same food (familiar food) than toward unfamiliar siblings that were reared on unfamiliar food. These results, together with the results of previous tadpole kin recognition studies, suggest that tadpoles orient toward cues learned early in ontogeny, regardless of the cues' source. Tadpoles that preferentially associated with cues learned from their environment at birth would tend to be philopatric. Censuses of 14 natural ponds revealed that tadpole density remained greatest near oviposition sites until four days before metamorphosis. Tadpole philopatry may be advantageous: tadpoles restricted to their natal site had greater growth and survivorship than did their siblings restricted to randomly selected sites elsewhere within the same pond. Thus kin affiliative tendency observed in the laboratory in this and perhaps other species of anurans may be a byproduct of habitat selection. Since kin discrimination in animals is most commonly assayed as orientation toward kin, it follows that many examples of “kin recognition” may not represent true attempts to identify kin as such, but rather may reflect some other recognition system that is under entirely different selective pressures.  相似文献   

5.
The fat body of Lithobates catesbeianus (formerly Rana catesbeiana) tadpoles was studied during metamorphosis and after food deprivation in order to detect changes in its weight, adipocyte size, histology, and melatonin content. Bullfrog tadpoles have large fat bodies throughout their long larval life. Fat bodies increase in absolute weight, and weight relative to body mass, during late stages of prometamorphosis, peaking just before climax, and then decreasing, especially during the latter stages of transformation into the froglet. The climax decrease is accompanied by a reduction in size of adipocytes and a change in histology of the fat body such that interstitial tissue becomes more prominent. Food deprivation for a month during early prometamorphosis significantly decreased fat body weight and adipocyte size but did not affect the rate of development. However, food restriction just before climax retarded development, suggesting that the increased nutrient storage in the fat body before climax is necessary for metamorphic progress. Melatonin, which might be involved in the regulation of seasonal changes in fat stores, stayed approximately at the same level during most of larval life, but increased sharply in the fat body during the late stages of climax. The findings show that the rate of development of these tadpoles is not affected by starvation during larval life as long as they can utilize fat body stores for nourishment. They also suggest that the build up of fat body stores just before climax is necessary for progress during the climax period when feeding stops.  相似文献   

6.
The presence of predators can induce changes in both the morphology and behaviour of Anuran larvae, affecting both their size and developmental stage at metamorphosis and, consequently, the fitness of adult individuals. Tadpoles have been shown to be capable of finely tuning their defensive responses according to the actual risk perceived, which is expected to vary according to the prey-to-predator size ratio. In this study, we exposed common frog (Rana temporaria) tadpoles (Gosner stages 28–30), for a period of 2 weeks, to the non-lethal presence of dragonfly larvae (Anax imperator) and backswimmers (Notonecta glauca). In such a narrow window of time, we expected behavioural responses to be similar for both predators and exposure to predation risk to have negligible effects on tadpole development and weight. Overall, tadpoles increased hiding behaviour and were less active when predators were present in the experimental mesocosms, but behavioural responses were constrained to the early phase of the ontogeny and were no longer used when tadpoles reached a threshold size. Developmental rate slightly slowed down for predator treatments in comparison to controls, possibly as a consequence of energetic investment in unrecorded morphological defences. Although variation in laboratory conditions and protocols makes it hard to compare the results of different experiments, our results contribute to verify the consistency of behavioural responses in Anuran larvae.  相似文献   

7.
M. L. Crump 《Oecologia》1989,78(4):486-489
Summary Bufo periglenes, a toad endemic to montane Costa Rica, produces an unusually small clutch of large, yolk-rich eggs. The toads breed in small ephemeral pools that are unpredictable in duration and may be low in food availability. Two congeners, Bufo coniferus and Bufo marinus, occur nearby, breed in more permanent bodies of water that offer more food, and exhibit the typical toad pattern of large clutches of small eggs. Tadpoles of all three species feed on detritus and suspended organic material. By raising tadpoles of the three species individually with and without food I investigated the relationship between egg size (yolk provision) and tadpole survival. All of the unfed B. coniferus and B. marinus tadpoles grew little and died soon after developing to the hindlimb bud stage. On the other hand, all of the unfed B. periglenes tadpoles metamorphosed successfully, demonstrating that the tadpoles are facultatively non-feeding; developmental time from hatching to metamorphosis was significantly shorter for unfed tadpoles than for fed tadpoles, but fed individuals were significantly larger at transformation. Faster developmental rate and larger body size at transformation are both advantageous for frogs and toads, but cannot be attained simultaneously. Large egg size may afford flexibility in unpredictable environments. In pools where food is available, tadpoles presumably eat, take longer to metamorphose, but are larger at transformation than tadpoles developing in nutrient-poor sites. Small body size at transformation (a consequence of not eating) has potential costs, but the large quantity of yolk provided by a large egg enhances the probability of metamorphosis in food-limited environments.  相似文献   

8.
In ecological models, the timing of amphibian metamorphosis is dependent upon rate of larval growth, e.g., tadpoles that experience a decrease in growth rate can initiate metamorphosis early. Recent authors have suggested that this plasticity may be lost at some point during the larval period. We tested this hypothesis by exposing groups of tadpoles of the gray treefrog, Hyla versicolor, to different growth schedules. In endocrine models, metamorphosis is dependent on thyroxine levels and thyroxine is antagonized by prolactin (amphibian larval growth hormone), consistent with the idea that a rapidly growing tadpole can delay metamorphosis. Thus, we also manipulated the rate of development by supplementing or maintaining natural thyroxine levels for half of the tadpoles in each growth treatment. All tadpoles that received thyroxine supplements metamorphosed at the same time regardless of growth history. They also metamorphosed earlier than tadpoles not treated with thyroxine. Tadpoles not given thyroxine supplements metamorphosed at different times: those growing rapidly during day 15-34 metamorphosed earlier than tadpoles growing slowly. Growth rate before day 15 and after day 34 had no effect on metamorphic timing. The difference in larval period between these rapidly growing tadpoles and their sisters given thyroxine treatments was less than the same comparison for tadpoles that grew slowly during the same period. This apparent prolactin/thyroxine antagonism did not exist after day 34. These results are consistent with the hypothesis of a loss of plasticity in metamorphic timing.  相似文献   

9.
If an organism''s juvenile and adult life stages inhabit different environments, certain traits may need to be independently adapted to each environment. In many organisms, a move to a different environment during ontogeny is accompanied by metamorphosis. In such organisms phenotypic induction early in ontogeny can affect later phenotypes. In laboratory experiments we first investigated correlations between body morphology and the locomotor performance traits expressed in different life stages of the common frog, Rana temporaria: swimming speed and acceleration in tadpoles; and jump-distance in froglets. We then tested for correlations between these performances across life stages. We also subjected tadpoles to unchanging or decreasing water levels to explore whether decreasing water levels might induce any carry-over effects. Body morphology and performance were correlated in tadpoles; morphology and performance were correlated in froglets: hence body shape and morphology affect performance within each life stage. However, performance was decoupled across life stages, as there was no correlation between performance in tadpoles and performance in froglets. While size did not influence tadpole performance, it was correlated with performance of the metamorphosed froglets. Experiencing decreasing water levels accelerated development time, which resulted in smaller tadpoles and froglets, i.e., a carry-over effect. Interestingly, decreasing water levels positively affected the performance of tadpoles, but negatively affected froglet performance. Our results suggest that performance does not necessarily have to be correlated between life stages. However, froglet performance is size dependent and carried over from the tadpole stage, suggesting that some important size-dependent characters cannot be decoupled via metamorphosis.  相似文献   

10.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

11.
Summary Hybridogenetic species possess a hybrid genome: half is clonally inherited (hemiclonal reproduction) while the other half is obtained each generation by sexual reproduction with a parental species. We addressed the question of whether different hemiclones of the hybridogenetic water frogRana esculenta are locally adapted for genetic compatibility with their sexual parental hostRana lessonae. We artificially crossedR. esculenta females of three hemiclones (GUT1, GUT2 and GUT3) from a pond near Gütighausen, Switzerland and one hemiclone (HEL1) from near Hellberg, Switzerland each toR. lessonae males from both populations. We also created primary hybrids by crossing the sameR. lessonae males from both populations toR. ridibunda females from Pozna, Poland (POZ). Tadpoles were then reared in the laboratory at two food levels to assess their performance related to early larval growth rate, body size at metamorphosis and length of the larval period. Tadpoles from hemiclones GUT1, GUT3 and POZ had higher growth rates than those from hemiclones GUT2 and HEL1 at the low food level, but at the high food level all growth rates were higher and diverged significantly between hemiclones GUT2 and HEL1. Tadpoles from the intrapopulational crosses GUT2 × GUT and HEL1 × HEL were larger at metamorphosis than those from the interpopulational crosses GUT2 × HEL and HEL1 × GUT. A high food level increased the size at metamorphosis in all tadpoles. A high food level also decreased the days to metamorphosis and tadpoles from GUT1, GUT3 and POZ had the shortest larval period whereas those from GUT2 and HEL1 had the longest. These results indicate that the differential compatibility of clonal genomes may play an important role in hybridogenetic species successfully using locally adapted sexual genomes of parental species and that interclonal selection is likely important in determining the distribution of hemiclones among local populations.  相似文献   

12.
Effects of different combinations of stressors (viz. temperature, food level) on growth, developmental and survival rates of Rana temporaria tadpoles from two geographically widely (∼ 1500 km) separated populations were studied in a common garden experiment. In both populations, low temperature and low food level lead to towered growth rates and delayed metamorphosis, whereas high temperature and high food level had the opposite effect. Tadpoles from north metamorphosed earlier and exhibited higher growth rates than tadpoles from south, suggesting local adaptation to shorter growth period and cooler ambient temperature in north. Size at metamorphosis did not differ between the two populations, but when the differences in metamorphic age were accounted for, then the tadpoles from north were larger than those from south. These results suggest considerable adaptive genetic differentiation in growth rates, size and timing of metamorphosis between northern and southern R. temporaria populations. In both populations, high food levels tended to reduce tadpole survival rates and there was a negative correlation between growth and survival rates across different treatments in both populations. In general, tadpoles from north experienced high mortality rates in high food level - low temperature treatments, whereas southern tadpoles experienced high mortality in high food level-high temperature treatments. This suggest that there may be genetic differences among different populations as how they would be influenced by high nutrient loads, such as brought along for example by fertilization of forest or agricultural soils.  相似文献   

13.
This study examines the consequences of variation in the laying and hatching date for the time of metamorphosis in the common frog Rana temporaria . Field data are presented showing that eggs laid early tend to take longer to develop. Thus, the time advantage for early eggs is reduced at the time of hatching. There was an among-year variation in this phenomenon; it was not manifest in a phenologically late year. Also, field data revealed that mortality due to pond freezing is a real risk for early laid eggs. Finally, two experiments in tanks analyse the effects of hatching date variation for the time of metamorphosis. (1) When hatching was experimentally delayed by 7 or 11 days, this resulted in later metamorphosis, however, by only 2 and 5 days, respectively. (2a) When tadpoles from the same pond that naturally hatched at different times were compared, it was found that a hatching time difference of 6 days resulted in later metamorphosis by 2 days only. (2b) A comparison of tadpoles from two different ponds that hatched 11 days apart also resulted in only 2 days' difference in metamorphosis. In this case, the later but faster developing tadpoles metamorphosed at a smaller size. I suggest that eggs from these two ponds differed genetically in the growth and development strategy. Despite the obvious risks, and the moderate gain in terms of early metamorphosis, frogs breed dangerously early in spring. Possible reasons for this are discussed. These include external selective forces that promote early metamorphosis (also at a high cost), within-pond competition among tadpoles with an advantage for early and large tadpoles and finally factors relating to mate choice at the breeding site.  相似文献   

14.
Tadpoles are unusual among free-living amphibians in having an atonic, non-acid secreting, underdeveloped stomach. Morphologically the typical tadpole foregut is most similar to the flaccid, non-acid secreting stomach of adult female of the gastric-brooding frog, Rheobatrachus, during brooding. In Rheobatrachus the brooding condition is induced by prostaglandin E2 secreted from the mouths of brooded larvae. I propose that typical, free-living tadpoles also excrete prostaglandins of the E family in their oral mucus and that these compounds are naturally swallowed with food particles by the tadpoles. According to this hypothesis, when food is abundant larvae swallow a large amount of mucus and, consequently, a lot of hormone, which retards differentiation of the adult, acid secreting, peristaltic stomach. However, when food is less abundant less food and mucus is swallowed. In this situation less prostaglandin passes down the alimentary tract and the gut proceeds to differentiate. If this theory is correct it provides a direct link between an environmental factor--the availability of food--and an endocrinological factor affecting metamorphosis. The theory is consistent with our current understanding of the endocrinology of metamorphosis, as well as the evolution of direct-development in anurans.  相似文献   

15.
We orally inoculated Rana catesbeiana tadpoles (n=23) and metamorphs (n=24) to test their suitability as hosts for Escherichia coli O157:H7. Tadpoles were housed in flowthrough aquaria and did not become infected. Metamorphs were housed in stagnant aquaria, and 54% tested positive through 14 days postinoculation, suggesting that they are suitable hosts for E. coli O157:H7.  相似文献   

16.
1. This study examines the aggregation behaviour and activity of larvae of the Common Frog Rana temporaria in relation to the early social environment, ontogeny and the presence of chemical cues from a predatory fish to address three main questions: (i) Does previous social interaction influence aggregation behaviour in later developmental stages? (ii) To what extent does aggregation behaviour depend upon the risk level perceived by the individual? (iii) Does aggregation behaviour change through ontogeny?
2. Tadpoles were reared from eggs either in small groups or in complete isolation. In relatively early stages of development, tadpoles showed no preference for the side of the test container containing siblings over the side containing no larvae regardless of the social context experienced (isolation or contact with siblings).
3. The presence of chemical cues from a potential predator did not trigger the aggregation behaviour of tadpoles, but it had a remarkable effect on their activity and spatial distribution. Tadpoles exposed to water preconditioned by a predator spent significantly less time swimming and avoided the central area of the test container more frequently than did controls exposed to unconditioned water.
4. Tadpoles were more active, avoided the central section and associated preferentially with conspecifics (siblings) at later stages of development regardless of the social conditioning they had previously experienced.
5. Individuals reared in groups were twice as active as individuals reared in isolation. This suggests that the early social environment experienced by larvae can influence future behaviour and thereby growth and development rates.
6. The expression of conspecific attraction is probably linked to an ontogenetic shift in larval behaviour. However, reduced activity, rather than aggregation, appears to be the basic antipredator mechanism in larval Common Frog.  相似文献   

17.
Heterochrony refers to those permutations in timing of differentiation events, and those changes in rates of growth and development through which morphological changes and novelties originate during phyletic evolution. This research analyzes morphological variation during the ontogeny of 18 different anuran species that inhabit semi-arid environments of the Chaco in South America. I use field data, collection samples, and anatomical methods to compare larval growth, and sequences of ontogenetic events. Most species present a similar pattern of larval development, with a size at metamorphosis related to the duration of larval period, and disappearance and transformations of larval features that occur in a short period between forelimb emergence and tail loss. Among these 18 species, Pseudis paradoxa has giant tadpole and long larval development that are the results of deviations of rates of growth. In this species events of differentiation that usually occur at postmetamorphic stages have an offset when tail is still present. Tadpoles of Lepidobatrachus spp. reach large sizes at metamorphosis by accelerate developmental rates and exhibit an early onset of metamorphic features. The uniqueness of the ontogeny of Lepidobatrachus indicates that evolution of anuran larval development may occasionally involve mid-metamorphic morphologies conserving a free feeding tadpole and reduction of the morphological-ecological differences between tadpoles and adults.  相似文献   

18.
Robert A. Newman 《Oecologia》1998,115(1-2):9-16
Phenotypic plasticity is adaptive for an organism inhabiting a variable environment if the optimal phenotype of a trait that affects fitness varies with environmental conditions, and if the organism can perceive environmental conditions and respond appropriately. Wilbur and Collins have proposed that amphibian larvae might respond adaptively to changes in their resource environment. If conditions for growth in the aquatic environment deteriorate, then a tadpole should metamorphose earlier and smaller than a tadpole under constant high growth conditions. Several experiments on a variety of species have tested this prediction, but only one demonstrated such a response. That experiment involved Couch's spadefoot toads (Scaphiopus couchii) and employed a gradual decrease in food level, whereas the others all used an abrupt switch from high to low food. The purpose of the present experiment was to examine the response of S. couchii to an abrupt change in food level, and to determine if the response depended on the level of two other factors, density and temperature, that also affect larval development. The average effects of the abrupt change in food level were similar to those seen in studies on other species: age at metamorphosis was primarily determined by the early food regime, and size at metamorphosis was determined by food level late in the larval period, suggesting that the effect of decreased food depends on how the food change is done. However, the response to even an abrupt food change depended on interactions with other environmental factors. At high temperature, high initial food, and low density, development was very rapid and tadpoles switched from high to low food metamorphosed at about the same time and size as those at constant high food. In contrast, under high temperature and high initial food conditions, but at high density, tadpoles switched to low food metamorphosed somewhat earlier and smaller, on average, than tadpoles kept at high food. At low temperature, the direction of response depended on density: tadpoles metamorphosed much smaller and slightly, but significantly, earlier at low density, but smaller and later at high density. The developmental response to increased food also varied with temperature. Larvae at high temperature metamorphosed earlier and larger than those at constant low food. At low temperature, larvae metamorphosed larger, but at nearly the same time as their counterparts at constant low food. The combination of high density and constant low food prevented any tadpoles from metamorphosing at high temperature, and allowed relatively few metamorphs at low temperature. Under conditions which impose either very rapid or retarded development, the opportunity to respond to altered food level may be limited. Interactions among environmental factors, therefore, may constrain responses to changing conditions, and may even prevent completion of development. Received: 3 February 1997 / Accepted: 2 October 1997  相似文献   

19.
The Indian Purple frog, Nasikabatrachus sahyadrensis, occupies a basal phylogenetic position among neobatrachian anurans and has a very unusual life history. Tadpoles have a large ventral oral sucker, which they use to cling to rocks in torrents, whereas metamorphs possess adaptations for life underground. The developmental changes that underlie these shifts in habits and habitats, and especially the internal remodeling of the cranial and postcranial skeleton, are unknown. Using a nearly complete metamorphic series from free-living larva to metamorph, we describe the postembryonic skeletal ontogeny of this ancient and unique monotypic lineage. The torrent-dwelling larva possesses a dorsoventrally flattened body and a head with tiny dorsal eyes, robust lower and upper jaw cartilages, well-developed trabecular horns, and a definable gap between the trabecular horns and the tip of the snout. Unlike tadpoles of many other frogs, those of Nasikabatrachus retain larval mouthparts into late metamorphic stages. This unusual feature enables the larvae to maintain their clinging habit until near the end of metamorphosis. The subsequent ontogenetic shift from clinging to digging is correlated with rapid morphological changes and behavioral modifications. Metamorphs are equipped with a shortened tibiafibula and ossified prehallical elements, which likely facilitate initial digging using the hind limbs. Subsequently, the frogs may shift to headfirst burrowing by using the wedge-shaped skull, anteriorly positioned pectoral girdle, well-developed humeral crests and spatula-shaped forelimbs. The transition from an aquatic life in torrents to a terrestrial life underground entails dramatic changes in skeletal morphology and function that represent an extreme in metamorphic remodeling. Our analysis enhances the scope for detailed comparative studies across anurans, a group renowned for the diversity of its life history strategies.  相似文献   

20.
1. Sediment and nutrient loading in freshwater systems are leading causes of aquatic habitat degradation globally. We investigated the impacts of fine-sediment and nutrient additions on the growth and survival of western toad ( Bufo boreas ) tadpoles and emergent metamorphs in mesocosm and exclosure experiments.
2. Mesocosm tanks received weekly pulses of fine sediments to create initial concentrations of 0, 130 and 260 mg L−1 of suspended sediment and either bi-weekly additions of nutrients (N = 160 μg L−1, P = 10 μg L−1) or no additions in a factorial design. Within mesocosms, tadpole exclosures allowed for quantification of tadpole grazing pressure on periphyton biomass, chlorophyll- a and sediment deposition.
3. Tadpoles receiving sediment additions experienced slower growth rates and reduced survival to metamorphosis, although no effects of treatment were detected on size at metamorphosis or time to metamorphosis. Nutrient additions also lowered survival, but had no impact on other measured parameters of tadpole fitness. Dissections and gut content analysis revealed that tadpoles ingested sediment in large quantities altering the proportion of the organic content of ingested food.
4. Together these results suggest that although sediment was readily consumed by tadpoles, its presence in the larval environment had an overall negative effect on tadpole growth and survival, although not as severe as predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号