首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
NADPH-linked alpha,beta-ketoalkene double bond reductase was purified from rat liver cytosol by fractionation with ammonium sulfate, and chromatography with DEAE-cellulose. AF-Blue Toyopearl and hydroxyapatite. The purified enzyme was homogeneous by the criterion of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 39,500 by the electrophoresis and by HPLC gel filtration on a TSK gel G3000 SWXL column. The double bond of 2-alkenals was also reduced by the enzyme, but to a lesser extent. The enzyme activity was inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuribenzoic acid, N-ethylmaleimide, iodoacetamide, dicumarol, quercitrin, and disulfirum. However, the enzyme was insensitive to oxygen.  相似文献   

2.
This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.1, and the E406Q mutant of HPAO. This pattern is ascribed to a productive TPQ orientation, with the C5 [double bond] O near the substrate-binding site and the C3 [bond] H near the Cu. In contrast, a slow rate of C5 [double bond] O exchange (t(1/2) = 1.6-3.3 h) coupled with a fast rate of C3 [bond] H exchange (t(1/2) < 30 min) was observed for the D319E and D319N catalytic base mutants of HPAO and for PSAO at pH 4.6 (t(1/2) = 4.5 h for C5 [double bond] O exchange). This pattern identifies a flipped orientation, involving 180 degrees rotation about the C alpha-C beta bond, which locates the C3 [bond] H near the substrate-binding site and the C5 double bond] O near the Cu. Finally, fast rates of both C5 [double bond] O and C3 [bond] H exchange (t(1/2) < 30 min) were observed for the amine oxidase from Escherichia coli and the N404A mutant of HPAO, suggesting a mobile cofactor, with multiple TPQ orientations between productive and flipped. These results demonstrate that opposing sides of the TPQ ring possess different degrees of solvent accessibility and that the rates of C5 [double bond] O and C3 [bond] H exchange can be used to predict the TPQ cofactor orientation in the resting forms of these enzymes.  相似文献   

3.
The plant growth regulator, abscisic acid (ABA), is synthesized via the oxidative cleavage of an epoxy-carotenoid. Specifically, a double bond is cleaved by molecular oxygen and an aldehyde is formed at the site of cleavage in both products. The Vp14 gene from maize encodes an oxidative cleavage enzyme for ABA biosynthesis and the recombinant VP14 protein catalyzes the cleavage reaction in vitro. The enzyme has a strict requirement for a 9-cis double bond adjacent to the site of cleavage (the 11-12 bond), but shows some plasticity in other features of carotenoids that are cleaved. A kinetic analysis with the 9-cis isomer of five carotenoids displays several substrate activity relationships. One of the carotenoids was not readily cleaved, but inhibited the cleavage of another substrate in mixed assays. Of the remaining four carotenoids used in this study, three of the substrates have similar V(max) values. The V(max) for the cleavage of one carotenoid substrate was significantly higher. Molecular modeling and several three-dimensional quantitative substrate-activity relationship programs were used to analyze these results. In addition to a 9-cis double bond, the presence and orientation of the ring hydroxyl affects substrate binding or the subsequent cleavage. Additional variations that affect substrate cleavage are proposed.  相似文献   

4.
Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the α,β-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency.  相似文献   

5.
The properties of the Delta6 desaturase/acetylenase from the moss Ceratodon purpureus and the Delta12 acetylenase from the dicot Crepis alpina were studied by expressing the encoding genes in Arabidopsis thaliana and Saccharomyces cerevisiae. The acetylenase from C. alpinaDelta12 desaturated both oleate and linoleate with about equal efficiency. The desaturation of oleate gave rise to 9(Z),12(E)- and 9(Z),12(Z)-octadecadienoates in a ratio of approximately 3 : 1. Experiments using stereospecifically deuterated oleates showed that the pro-R hydrogen atoms were removed from C-12 and C-13 in the introduction of the 12(Z) double bond, whereas the pro-R and pro-S hydrogen atoms were removed from these carbons during the formation of the 12(E) double bond. The results suggested that the Delta12 acetylenase could accommodate oleate having either a cisoid or transoid conformation of the C(12)-C(13) single bond, and that these conformers served as precursors of the 12(Z) and 12(E) double bonds, respectively. However, only the 9(Z),12(Z)-octadecadienoate isomer could be further desaturated to 9(Z)-octadecen-12-ynoate (crepenynate) by the enzyme. The evolutionarily closely related Delta12 epoxygenase from Crepis palaestina had only weak desaturase activity but could also produce 9(Z),12(E)-octadecadienoate from oleate. The Delta6 acetylenase/desaturase from C. purpureus, on the other hand, produced only the 6(Z) isomers using C16 and C18 acyl groups possessing a Delta9 double bond as substrates. The Delta6 double bond was efficiently further converted to an acetylenic bond by a second round of desaturation but only if the acyl substrate had a Delta12 double bond and that this was in the Z configuration.  相似文献   

6.
The precursor of Escherichia coli RTEM beta-lactamase was purified to homogeneity on a milligram scale by a procedure independent of the binding properties of the protein and refolded to an active, reduced form. For comparing the folding kinetics, the wild-type enzyme was reduced and a mutant was constructed, in which the two cysteines that form a very stable disulfide bond in the RTEM enzyme were both changed into alanines. The rate of folding was determined by directly measuring the increase in enzymatic activity. The reduced precursor folds at least 15 times more slowly than either the reduced mature enzyme or the mature Cys----Ala double mutant under identical conditions. The wild-type enzyme, the Cys----Ala double mutant and the precursor protein all had similar KM values, demonstrating a very similar native state. The slow folding of the precursor compared with the mature form may be an essential and general feature to secure a transport competent conformation necessary for the translocation through a membrane in protein export. This folding assay of a precursor by directly following its enzymatic activity may facilitate the characterization of putative folding modulators in bacterial membrane transport.  相似文献   

7.
A new enzyme, Acetyl Coenzyme A: deacetylvindoline 0-acetyl transferase (EC 2.3.1. -) which catalyses the synthesis of vindoline from acetyl coenzyme A and deacetylvindoline was isolated from the soluble protein extract of Catharanthus roseus leaves and purified approximately 365-fold. The enzyme had an apparent pI of 4.6 upon chromatofocusing, an apparent molecular weight of 45,000 daltons and a pH optimum between 8.0 to 9.0. Dithiothreitol was essential to maintain enzyme activity.Substrate saturation studies of this enzyme resulted in Michaelis Menton kinetics giving Km values of 5.4 and 0.7µM respectively for acetyl coenzyme A and deacetylvindoline. Studies of the forward reaction demonstrated an absolute requirement for acetyl coenzyme A and deacetylvindoline derivatives containing a double bond at positions 6, 7, whereas the reverse reaction occurred only in the presence of free coenzyme A and vindoline derivatives containing the same double bond. The forward reaction was subject to product inhibition by coenzyme A with an apparent Ki of 8 µM, but was not inhibited by up to 2 mM vindoline. The rate of reaction could therefore be regulated by the level of free coenzyme A in the cell, unaffected by the accumulation of indole alkaloid product.It was suggested that this enzyme catalyses a late step in the biosynthesis of vindoline.  相似文献   

8.
A 9-hexadecenoic acid cis-trans isomerase (9-isomerase) that catalyzed the cis-to-trans isomerization of the double bond of free 9-cis-hexadecenoic acid [16:1(9c)] was purified to homogeneity from an extract of Pseudomonas sp. strain E-3 and characterized. Electrophoresis of the purified enzyme on both incompletely denaturing and denaturing polyacrylamide gels yielded a single band of a protein with a molecular mass of 80 kDa, suggesting that the isomerase is a monomeric protein of 80 kDa. The 9-isomerase, assayed with 16:1(9c) as a substrate, had a specific activity of 22.8 μmol h–1 (mg protein)–1 and a K m of 117.6 mM. The optimal pH and temperature for catalysis were approximately pH 7–8 and 30° C, respectively. The 9-isomerase catalyzed the cis-to-trans conversion of a double bond at positions 9, 10, or 11, but not that of a double bond at position 6 or 7 of cis-mono-unsaturated fatty acids with carbon chain lengths of 14, 15, 16, and 17. Octadecenoic acids with a double bond at position 9 or 11 were not susceptible to isomerization. These results suggest that 9-isomerase has a strict specificity for both the position of the double bond and the chain length of the fatty acid. The enzyme catalyzed the cis-to-trans isomerization of fatty acids in a free form, and in the presence of a membrane fraction it was also able to isomerize 16:1(9c) esterified to phosphatidylethanolamine. The 9-isomerase was strongly inhibited by catecholic antioxidants such as α-tocopherol and nordihydroguaiaretic acid, but was not inhibited by 1,10-phenanthroline or EDTA or under anoxic conditions. Based on these results, the possible mechanism of catalysis by this enzyme is discussed. Received: 21 May 1997 / Accepted: 5 September 1997  相似文献   

9.
T Kanda  C F Brewer  G Okada  E J Hehre 《Biochemistry》1986,25(5):1159-1165
New insight has been obtained into the catalytic capabilities of cellulase. Essentially homogeneous preparations of exo- (or Avicelase-) type and endo- (or CMCase-) type cellulases from Irpex lacteus and Aspergillus niger, respectively, were shown to hydrate the enolic bond of cellobial to form 2-deoxycellobiose. The A. niger enzyme also synthesized a small amount of a 2-deoxycellobiosyl-transfer product from cellobial. By use of digests conducted in deuterated buffer and 1H NMR spectra for product analysis, both cellulases were found to protonate (deuterate) the double bond of cellobial from below the si face of the D-glucal moiety, i.e., from a direction opposite that assumed for protonation of the beta-D-glycosidic linkages of cellulose and cellodextrins. The exo enzyme, which hydrolyzes the latter substrates primarily to cellobiose, rapidly catalyzed cellobial hydration to produce the beta-anomer of beta-D-glucopyranosyl(1----4)-2-deoxy-D-glucose-2(e)-d. The A. niger cellulase produced the same 2-deoxycellobiose-d from cellobial, though too slowly for its configuration to be determined. However, evidence was obtained for the formation of a beta-2-deoxycellobiosyl-d-D-glucose-transfer product by the enzyme. Thus, it is likely that all of the observed reactions with cellobial represent trans additions at the double bond. In any case, the anomeric configuration of products is created de novo. Separate mechanisms are described for the reaction of cellobial hydration and for the stereochemically different reaction of cellulose hydrolysis catalyzed by the present enzymes, assuming an arrangement of their catalytic groups analogous to that found in lysozyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
M H Gelb  R H Abeles 《Biochemistry》1984,23(26):6596-6604
The mechanism of inactivation of chymotrypsin by 3-benzyl-6-chloro-2-pyrone has been studied. Chloride analysis of the inactivated enzyme suggests that the complex does not contain intact chloropyrone or an acid chloride. 13C NMR studies of the enzyme inactivated with 13C-enriched chloropyrones show that (1) the pyrone ring is no longer intact, (2) C-6 becomes a carboxylate group and C-2 becomes esterified to the enzyme, probably to serine-195, and (3) a double bond is present adjacent to the serine ester. The inactivated enzyme slowly regains catalytic activity with the concomitant release of (E)-4-benzyl-2-pentenedioic acid. It is concluded that double bond migration occurs during reactivation since the position of the double bond in the released diacid product is different than in the inactivator-enzyme complex. When the reactivation is carried out in [18O]H2O-enriched water, a single oxygen-18 is incorporated into the released product and is further evidence that the inactivator is bound to the enzyme only through a single ester linkage. A deuterium isotope effect on reactivation is observed when a chloropyrone deuterated at C-5 is used. This result demonstrates that removal of a proton from C-5 is required for reactivation and that isomerization of the double bond and not hydrolysis of the acyl-enzyme is rate determining. A variety of amines accelerate the rate of reactivation by functioning as general bases and not as nucleophiles. A reaction scheme is presented that accounts for the formation of the stable inactivator-enzyme complex as well as the production of two products derived from enzymatic hydrolysis of the chloropyrone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The crystal structures of various different members of the family of fumarate reductases and succinate dehydrogenases have allowed the identification of a mobile clamp (or capping) domain [e.g., Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112], which has been proposed to be involved in regulating accessibility of the active site to substrate. To investigate this, we have constructed the A251C:S430C double mutant form of the soluble flavocytochrome c(3) fumarate reductase from Shewanella frigidimarina, to introduce an interdomain disulfide bond between the FAD-binding and clamp domains of the enzyme, thus restricting relative mobility between the two. Here, we describe the kinetic and crystallographic analysis of this double mutant enzyme. The 1.6 A resolution crystal structure of the A251C:S430C enzyme under oxidizing conditions reveals the formation of a disulfide bond, while Ellman analysis confirms its presence in the enzyme in solution. Kinetic analyses with the enzyme in both the nonbridged (free thiol) and the disulfide-bridged states indicate a slight decrease in the rate of fumarate reduction when the disulfide bridge is present, while solvent-kinetic-isotope studies indicate that in both wild-type and mutant enzymes the reaction is rate limited by proton and/or hydride transfer during catalysis. The limited effects of the inhibition of clamp domain mobility upon the catalytic reaction would indicate that such mobility is not essential for the regulation of substrate access or product release.  相似文献   

12.
Lignostilbene-alpha,beta-dioxygenase cleaves the olefinic double bond of phenolic stilbenes by a mechanism similar to that of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis. Several analogues of stilbene were designed and synthesized, and their efficacy as inhibitors of lignostilbene-alpha,beta-dioxygenase was examined. The compound (Z)-1-(4-hydroxyphenyl)-1-fluoro-2-phenylethene (2) was found to be a potent inhibitor of this enzyme with an IC(50) of 3 microM.  相似文献   

13.
This study analyses the activity of an Arabidopsis thaliana UDP-glycosyltransferase, UGT71B6 (71B6), towards abscisic acid (ABA) and its structural analogues. The enzyme preferentially glucosylated ABA and not its catabolites. The requirement for a specific chiral configuration of (+)-ABA was demonstrated through the use of analogues with the chiral centre changed or removed. The enzyme was able to accommodate extra bulk around the double bond of the ABA ring but not alterations to the 8'- and 9'-methyl groups. Interestingly, the ketone of ABA was not required for glucosylation. Bioactive analogues, resistant to 8'-hydroxylation, were also poor substrates for conjugation by UGT71B6. This suggests the compounds may be resistant to both pathways of ABA inactivation and may, therefore, prove to be useful agrochemicals for field applications.  相似文献   

14.
D- and L-aminooxysuccinate were synthesized and evaluated as inhibitors of cytoplasmic aspartate aminotransferase (EC 2.6.1.1) from porcine heart. L-Aminooxysuccinate was shown to be a slow binding inhibitor of the pyridoxal phosphate form of the enzyme with a Ki of 160 nM and a half-life of the inhibited complex of 8 min. Kinetic analysis revealed that inhibition followed a two-step mechanism in which the last step was rate-limiting. D-Aminooxysuccinate was not inhibitory up to a concentration of 0.1 mM. These compounds were compared to D- and L-hydrazinosuccinate, which are potent slow binding inhibitors of aspartate aminotransferase with Ki values of 1.5 and 0.5 nM, respectively. Models of all four analogs were built into the active site of the closed form of the enzyme. The energy-minimized conformations of both L-isomers bound to aspartate aminotransferase show better geometry for hydrogen bond and ion pair formation than do the corresponding D-isomers. The aldimine double bond formed by the L-isomers is not coplanar with the pyridoxal phosphate ring in accordance with the spectral properties of the inhibitor complexes that are characterized by broad absorbance bands. This lack of planarity was not evident for the models of D-hydrazinosuccinate and D-aminooxysuccinate.  相似文献   

15.
K R Hanson  E A Havir  C Ressler 《Biochemistry》1979,18(8):1431-1438
The phenylalanine analogue 3-(1,4-cyclohexadienyl)-L-alanine is converted to the hitherto unknown cinnamate analogue trans-3-(1,4-cyclohexadienyl)acrylic acid by L-phenylalanine ammonia-lyase (EC 4.3.1.5) from maize, potato, or Rhodotorula glutinis. The structure assigned to the product is confirmed by its 1H nuclear magnetic resonance spectrum and by the chemical synthesis to be described in a subsequent paper. On comparing the above substrate analogue with L-phenylalanine, the Km was lowered only slightly but kcat was reduced 14--40-fold depending on the source of the enzyme. Because the compounds closely resemble each other in size and hydrophobic properties, this lowering of kcat may be attributed to the electronic effect of replacing the pi electrons of the aromatic system by those of a double bond. Correct alignment at the active site appears to depend upon the space-filling properties of the ring system; open chain analogues that retain the gamma, beta double bond were found to be inhibitors, not substrates.  相似文献   

16.
Efficient lipase-mediated research work was successfully exploited for synthesizing potential 6″-O-acyl-polydatin prodrugs in biomass-derived 2-methyltetrahydrofuran (2-MeTHF). The results of the enzyme recognitions of nine acyl donors evidently demonstrated that the position and number of the CC double bond in acyl chains profoundly influenced the behavior of the enzyme, which could be attributable to the resonance effect between the double bond and carbonyl group. Further investigations showed that introducing various acyl groups into the polydatin apparently enhanced its pH stability and 1-octanol-water partition coefficient (log P). With regard to the human cervical cancer siHa cell apoptosis by a flow cytometry assay, the lipophilic 6″-O-sorboyl-polydatin exhibited improved apoptosis-inducing capability than the parent drug. The presence of the more lipophilic sorboyl chain in the acylated derivative could account for this.  相似文献   

17.
Methyl 13-(2-cyclopentenyl)tridecanoate (chaulmoograte) and methyl 13-(2-cyclopentenyl)-cis-6-tridecenoate (gorlate) were hydrogenated using palladium on barium sulfate in hexane. Products obtained by partial hydrogenations were fractionated by argentation thin-layer chromatography, and the components characterised and quantitatively analysed by gas-liquid chromatography, nuclear magnetic resonance spectroscopy, infrared spectroscopy, and reductive ozonolysis. The double bond in position 2 of the cyclopentene ring was found to shift to both positions 1 and 3, but the double bond in position 1 was saturated slower than that either in position 2 or 3. Isomerisation of the ring double bond was faster than its saturation. In methyl gorlate trans-double bonds in the chain accumulated due to their faster formation and slower hydrogenation than cis-double bonds. Saturation of the ring double bond was faster than that of the chain double bond.  相似文献   

18.
9-cis-Epoxycarotenoid dioxygenase (NCED), a key enzyme in abscisic acid (ABA) biosynthesis, cleaves the olefinic double bond of 9-cis-epoxycarotenoid. Several analogues of nordihydroguaiaretic acid (NDGA) were designed and synthesized, and their efficacy as inhibitors of NCED was examined. One of the synthesized compounds (20) was found to be an inhibitor of this enzyme, and inhibited ABA accumulation and stomatal closing, suggesting that 20 should be ABA biosynthesis inhibitor.  相似文献   

19.
At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the Delta11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde Delta11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small alpha,beta-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.  相似文献   

20.
The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号