首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Beta-adrenoceptor blocking agents may have, in addition to their primary action, also ancillary effects on the cell membrane. In the present paper the non-specific interaction of exaprolol with the ATPase systems in isolated rat heart sarcolemmal membranes was investigated. When preincubated with sarcolemmal membranes in vitro, exaprolol in concentrations below 10(-4) mol.l-1 had no significant effect on sarcolemmal Mg2+-, Ca2+- and (Na+ + K+)-ATPase activities. At exaprolol concentration of 10(-4) mol.l-1 the Mg2+- and Ca2+-ATPase activities became inhibited whereas the (Na+ + K+)-ATPase activity was markedly stimulated. A kinetic analysis of these interactions revealed a non-competitive inhibition of Mg2+- and Ca2+-ATPase. In the case of (Na+ + K+)-ATPase a synergistic type of stimulation characterized by an exaprolol-induced conversion of an essential sulfhydryl group in the active site of the enzyme to the more reactive [S-] form has been observed thus increasing the affinity of the enzyme to ATP. Exaprolol concentrations exceeding 5 X 10(-4) mol.l-1 induced an overall depression of the investigated enzyme activities.  相似文献   

2.
(Ca2+ + Mg2+)-ATPase activity of red cells and their isolated membranes was investigated in the presence of various Ca2+ concentrations and cytoplasmic activator protein. Red cell ATPase activity was high at low Ca2+ concentrations, and low at moderate and high concentrations of Ca2+. In the case of isolated membranes, both low and moderate ca2+ concentrations produced higher (Ca2+ + Mg2+)-ATPase activity than high Ca2+ concentration. Membrane-free hemolysate containing soluble activator of (Ca2+ + Mg2+)-ATPase produced a significant increase in (Ca2+ + Mg2+)-ATPase activity only at low ca2+ concentration. Regardless of Ca2+ and activator concentrations, the enzyme activity in the membrane was lower than lysed red cells. The low level of (Ca2+ + Mg2+)-ATPase activity seen at high Ca2+ concentration can be augmented by lowering the Ca2+ concentration of EGTA in the assay medium. However, once the membrane was exposed to a high Ca2+ concentration, the activator could no longer exert it maximum stimulation at the low Ca2+ concentration brought about by addition of EGTA. This loss of activation was not attributable to the Ca2+-induced denaturation of activator protein but rather related to the alteration of (Ca2+ + Mg2+)-ATPase states in the membrane. On the basis of these data, it is suggested that only a small portion of (Ca2+ + Mg2+)-ATPase activity of isolated membranes can be stimulated by the soluble activator and that (ca2+ + Mg2+)ATPase most likely exists in various states depending upon ca2+ concentration and the presence of activator. The enzyme state exhibiting the high degree of stimulation by activator may undergo irreversible damage in the presence of high Ca2+ concentrations.  相似文献   

3.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

4.
Rough endoplasmic reticulum membranes, purified from isolated rat pancreatic acini stimulated by carbachol, had a decreased Ca2+ content and increased (Ca2+ + Mg2+)-ATPase activity. Ca2+ was regained and ATPase activity reduced to control levels only after blockade by atropine. The (Ca2+ + Mg2+)-ATPase was activated by free Ca2+ (half-maximal at 0.17 microM; maximal at 0.7 microM) over the concentration range which occurs in the cell cytoplasm. Pretreatment with EGTA, at a high concentration (5 mM), inhibited ATPase activity which, our results suggest, was due to removal of a bound activator such as calmodulin. The rate of (Ca2+ + Mg2+)-ATPase actively declined during the 10-min period over which maximal active accumulation of Ca2+ by membrane vesicles occurs. In the presence of ionophore A23187, which released actively accumulated Ca2+ and stimulated the (Ca2+ + Mg2+)-ATPase, this time-dependent decline in activity was not observed. Our data provide evidence that the activity of the Ca2+-transporting ATPase of the rough endoplasmic reticulum is regulated by both extra and intravesicular Ca2+ and is consistent with a direct role of this enzyme in the release and uptake of Ca2+ during cholinergic stimulation of pancreatic acinar cells.  相似文献   

5.
The dependence of the (Ca2+ + Mg2+)-ATPase activity of sarcoplasmic reticulum vesicles upon the concentration of pentobarbital shows a biphasic pattern. Concentrations of pentobarbital ranging from 2 to 8 mM produce a slight stimulation, approximately 20-30%, of the ATPase activity of sarcoplasmic reticulum vesicles made leaky to Ca2+, whereas pentobarbital concentrations above 10 mM strongly inhibit the activity. The purified ATPase shows a higher sensitivity to pentobarbital, namely 3-4-fold shift towards lower values of the K0.5 value of inhibition by this drug. These effects of pentobarbital are observed over a wide range of ATP concentrations. In addition, this drug shifts the Ca2+ dependence of the (Ca2+ + Mg2+)-ATPase activity towards higher values of free Ca2+ concentrations and increases several-fold the passive permeability to Ca2+ of the sarcoplasmic reticulum membranes. At the concentrations of pentobarbital that inhibit this enzyme in the sarcoplasmic reticulum membrane, pentobarbital does not significantly alter the order parameter of these membranes as monitored with diphenylhexatriene, whereas the temperature of denaturation of the (Ca2+ + Mg2+)-ATPase is decreased by 4-5 C degrees, thus, indicating that the conformation of the ATPase is altered. The effects of pentobarbital on the intensity of the fluorescence of fluorescein-labeled (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum also support the hypothesis of a conformational change in the enzyme induced by millimolar concentrations of this drug. It is concluded that the inhibition of the sarcoplasmic reticulum ATPase by pentobarbital is a consequence of its binding to hydrophobic binding sites in this enzyme.  相似文献   

6.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

7.
Isothiocyanates are potent modifiers of thiol groups, and they have been successfully applied in studying the active site structure of renal (Na+ + K+)-ATPase. However, very little has been known on interactions of isothiocyanates with myocardial sarcolemmal ATPases. In the present study the mode of interaction and inhibitory effect of p-bromophenyl isothiocyanate (BPITC) on isolated rat heart sarcolemmal preparation ATPase activities not exhibiting (Mg-Ca)-ATPase activity was investigated. BPITC in concentrations of 10(-7)-10(-4) mol . l-1 inhibited selectively and non-competitively the (Na+ + K+)-ATPase activity in the sarcolemma with an ID50 around 2.10(-7) mol . l-1. The non-specific interaction of BPITC with bivalent cations, namely with Mg2+ and Ca2+, in the reaction system was eliminated by preincubation of membranes with BPITC keeping the ratio of inhibitor to membrane protein concentration constant. Under these conditions no considerable inhibitory effects were observed on Mg2+-ATPase or the low-affinity Ca2+-ATPase of sarcolemma. Preincubation of membranes with 2 mmol . l-1 ATP protected (Na+ + K+)-ATPase activity against inhibition by BPITC. The interaction of BIPTC with the sarcolemma proved to be reversible in the presence of beta-mercaptoethanol or dithiothreitol.  相似文献   

8.
Sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase was previously shown to have Ca2+-dependent and -selective ionophoric activity when tested in oxidized cholesterol lipid bilayer membranes (Shamoo, A. E., and MacLennan, D. H. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 3522). ruthenium red, a known inhibitor of (Ca2+ + Mg2+)-ATPase, is found to inhibit the Ca2+-ionophoric activity associated with (Ca2+ + Mg2+)-ATPase. Furthermore, ruthenium red alone acts as an anion-selective ionophore in lipid bilayers with the the following selectivity sequence for anions: l- greater than Cl-, Br- greater than F- greater than NO3-. The PCl-/PNa+ ratio was approximately 4/l. The presence of ruthenium red in excess of Ca2+ ionophore in lipid bilayer experiments converts the cation selectivity of the bilayer due to Ca2+ ionophore into anion selectivity.  相似文献   

9.
Two Ca2+-stimulated ATPase activities have been identified in the plasma membrane of rat parotid: (a) a (Ca2+ + Mg2+)-ATPase with high affinity for free Ca2+ (apparent Km = 208 nM, Vmax = 188 nmol/min per mg) and requiring micromolar concentration of Mg2+ and (b) a (Ca2+ or Mg2+)-ATPase with relatively low affinity for free Ca2+ (K0.5 = 23 microM) or free Mg2+ (K0.5 = 26 microM). The low-affinity (Ca2+ or Mg2+)-ATPase can be maximally stimulated by Ca2+ alone or Mg2+ alone. The high-affinity (Ca2+ + Mg2+)-ATPase exhibits sigmoidal kinetics with respect to ATP concentration with K0.5 = 0.4 mM and a Hill coefficient of 1.91. It displays low substrate specificity with respect to nucleotide triphosphates. Although trifluoperazine inhibits the activity of the high affinity (Ca2+ + Mg2+)-ATPase only slightly, it inhibits the activity of the low-affinity (Ca2+ or Mg2+)-ATPase quite potently with 22 microM trifluoperazine inhibiting the enzymic activity by 50%. Vanadate, inositol 1,4,5-trisphosphate, phosphatidylinositol 4,5-bisphosphate, Na+,K+ and ouabain had no effect on the activities of both ATPases. Calmodulin added to the plasma membranes does not stimulate the activities of both ATPases. The properties of the high-affinity (Ca2+ + Mg2+)-ATPase are distinctly different from those of the previously reported Ca2+-pump activity of the rat parotid plasma membrane.  相似文献   

10.
J Mas-Oliva 《Cell calcium》1982,3(2):113-129
A reconstitution procedure for a cardiac sarcolemmal enriched fraction is described. In the reconstituted cardiac sarcolemmal inside-out vesicles, a difference in calcium transport and (Ca2+ + Mg2+)-ATPase activity was found depending on the side of the membrane at which sodium and potassium were placed. Having inhibited the (Na+ + K+)- ATPase activity with ouabain, the active transport of calcium was increased when potassium was located outside and sodium inside the reconstituted vesicles. Nevertheless, this activity was maximal having potassium present on both sides. During calcium transport it was also shown that 86Rb moves opposite to calcium. When the experiment was carried out having 22Na located at the inside, there was no movement of this cation despite the low calcium transport observed. The present study supports the possibility of potassium having a stimulatory effect upon the sarcolemmal (Ca2+ + Mg2+)-ATPase activity and suggests the existence of a Ca2+, K+ co-transport carried out by this enzyme.  相似文献   

11.
When the cholesterol concentration in the sarcolemmal system is raised, the (Ca2+,Mg2+)-ATPase activity acquires an important degree of thermostability; phenomena that is completely lost if the experiment is carried out with cholesterol depleted sarcolemma. In this system, a gradual depletion of sarcolemmal cholesterol, renders the ATPase remarkably sensitive to temperature. At different concentrations of ATP, it is found that cholesterol affects the Vmax of the (Ca2+,Mg2+)-ATPase but not its Km. These results support our earlier suggestion of a direct effect of cholesterol upon the enzyme, and opens a possible mode of action of cholesterol on the enzyme. It is suggested that the inverse relationship between catalysis and thermostability is due to differences in the flexibility of the enzyme directly related to hydrophobicity changes caused by cholesterol.  相似文献   

12.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

13.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

14.
The effects of cardiotoxin on the ATPase activity and Ca2+-transport of guinea pig erythrocyte and rabbit muscle sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase (E.C.3.6.1.3) were investigated. Erythrocyte (Ca2+ + Mg2+)-ATPase was inhibited by cardiotoxin in a time- and dose-dependent fashion and inhibition appears to be irreversible. Micromolar calcium prevented this inhibitory effect. Specificity for (Ca2+ + Mg2+)-ATPase inhibition by cardiotoxin was indicated since a homologous neurotoxin had no effect. Cardiotoxin did not affect (Ca2+ + Mg2+)-ATPase activity from sarcoplasmic reticulum, but Ca2+-transport was 50% inhibited. This inhibition was not due to an increased Ca2+-efflux and could be the result of an intramolecular uncoupling of ATPase activity from Ca2+-transport. Inhibition of Ca2+-transport by cardiotoxin could not be prevented by millimolar concentrations of Ca2+. It is suggested that the biological effects of cardiotoxin could be a consequence of inhibition of plasma membrane (Ca2+ + Mg2+)-ATPases.  相似文献   

15.
The involvement of membrane protein in dystrophic chicken fragmented sarcoplasmic reticulum alterations has been examined. A purified preparation of the (Ca2+ + Mg2+)-ATPase protein from dystrophic fragmented sarcoplasmic reticulum was found to have a reduced calcium-sensitive ATPase activity and phosphoenzyme level, in agreement with alterations found in dystrophic chicken fragmented sarcoplasmic reticulum. An amino acid analysis of the ATPase preparations showed no difference in the normal and dystrophic (Ca2+ + Mg2+)-ATPase. The (Ca2+ + Mg2+)-ATPase was investigated further by isoelectric focusing and proteolytic digestion of the fragmented sarcoplasmic reticulum. Neither of these methods indicated any alteration in the composition of the dystrophic (Ca2+ + Mg2+)-ATPase. We have concluded that the alterations observed in dystrophic fragmented sarcoplasmic reticulum are not due to increased amounts of non-(Ca2+ + Mg2+)-ATPase protein, and that the normal and dystrophic (Ca2+ + Mg2+)-ATPase protein are not detectably different.  相似文献   

16.
Cholesterol hemisuccinate has been shown to equilibrate readily with liposomes and with the (Ca2+-Mg2+)-ATPase from sarcoplasmic reticulum and has been used to modify the sterol content of these membranes. Cholesterol hemisuccinate incorporates into dioleoylphosphatidylcholine (DOPC) up to a molar ratio of 3:1 sterol to DOPC. Effects on lipid order as detected by electron spin resonance and fluorescence polarization are comparable to those of cholesterol. Binding constants have been determined, and the uncharged form of the sterol binds more strongly than the anionic form. Binding to DOPC and to the lipid component of the ATPase system is comparable. From use of the fluorescence quenching properties of 1,2-bis(9,10- dibromooleoyl )phosphatidylcholine and dibromocholesterol hemisuccinate, two classes of binding sites on the ATPase have been deduced. At the lipid/protein interface, the binding constant for cholesterol hemisuccinate is considerably less than that for DOPC. At the second set of sites ( nonannular sites), binding occurs with Kd = 0.55 in molar ratio units. The effect of cholesterol hemisuccinate on the activity of the ATPase depends on the phospholipid present in the system: ATPase reconstituted with DOPC is inhibited whereas ATPase reconstituted with dimyristoleoylphosphatidylcholine is activated. We conclude that changes in membrane fluidity are not important in determining ATPase activity in these systems.  相似文献   

17.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+ -ATPase and calmodulin-insensitive (Na+ +K+)- and Mg2+ -ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+ -ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+ -ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ +K+)-ATPase and Mg2+ -ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

18.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

19.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1.10(-4) M. The sarcolemmal markers, ouabain-sensitive (Na+ +K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ +Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27-39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ +Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ +Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K1/2 for inhibition approx. 1.5 microM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

20.
The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号