首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sequence and antigenicity of calf metallothionein II   总被引:1,自引:0,他引:1  
Metallothionein isoform II was purified from calf liver. The protein had a metal content of 1.2-1.9 Cu ions and 5.6-6.2 Zn ions per molecule in different preparations. The complete amino acid sequence of the molecule was determined by automatic Edman degradation of CNBr and tryptic peptides of the carboxymethylated protein. The positions of the 20 cysteines were identical to those in other mammalian metallothioneins. The calf molecule exhibited one position of microheterogeneity. The homology in amino acid sequence of the calf protein to horse and human metallothioneins exceeded 87%. Attempts to isolate the Cu-binding domain by selective destabilization of the Zn-binding region followed by proteolysis revealed that the beta domain is the predominant site of Cu ligation, but significant quantities of the alpha domain peptide were also recovered. Therefore, the native CuZn-metallothionein must contain separate populations of molecules with Cu distributed differently. The immunoreactivity of the calf protein and the two corresponding domain peptides was analyzed. Analogous to the situation with rat metallothionein, the antigenic epitopes reside in the amino-terminal beta domain with the alpha domain region containing only minimal antigenicity.  相似文献   

2.
Yeast metallothionein. Sequence and metal-binding properties   总被引:31,自引:0,他引:31  
The protein product of the CUP1 locus in Cu-resistant Saccharomyces cerevisiae has been purified and characterized. The protein was found to lack the first 8 amino acids predicted by the nucleotide sequence of the gene. The residues removed from the amino-terminal region include 5 hydrophobic residues, two of which are aromatic. The unique amino terminus starting at Gln9 of the putative DNA translation product was observed for metallothionein purified in the presence of various protease inhibitors or from a pep4 mutant yeast strain deficient in vacuolar proteases. The remainder of the primary structure of the protein is equivalent to the decoded DNA sequence, so yeast metallothionein is a 53-residue polypeptide of molecular weight 5655. The isolated protein contained 8 copper ions ligated by 12 cysteines/molecule. Reconstitution studies of the apo-molecule revealed that 8 mol eq of Cu(I) conferred maximal stability against proteolysis and depleted the zinc content of zinc-saturated metallothionein. These assays suggested that the protein has 8 binding sites for Cu(I). Ag(I) ions bound to the protein with the same stoichiometry. Yeast metallothionein was also observed to coordinate Cd(II) and Zn(II) ions in vitro. In studies of direct binding, protection against proteolysis, and metal ion exchange, these divalent ions were found to associate with the protein with a maximal stoichiometry of 4 ions/molecule. Yeast metallothionein thus exhibits two distinct binding configurations for Cu(I) and Cd(II) as does the mammalian protein.  相似文献   

3.
Differences in the polymorphic forms of metallothionein   总被引:6,自引:0,他引:6  
Metallothionein induced in rat liver by metal ions can be resolved into two forms, referred to as isoforms I and II. These polymorphic forms differ in several properties. Sequence analysis of the CNBr-digested thionein isoforms revealed seven differences in the first 25 amino acids between isoforms I and II of Cd-induced thionein. The sequence of the first 25 amino acids in isoform II of Cu-induced thionein was identical to that of isoform II of Cd-induced thionein, suggesting that the same polymorphic forms are induced with different metal ions. Isoform II of Cd,Zn-thionein exhibited a reproducibly greater Stokes radius (17 Å) by gel filtration compared to isoform I (16.2 Å), whereas isoform II of Cu-thionein eluted with a Stokes radius of 16.2 Å. The isoforms also differ in Zn-binding affinity. Isoform I of several preparations of Cd,Zn-thionein and Zn-thionein invariably reconstituted greater esterase activity in apo-carbonic anhydrase than did isoform II. In Cd,Zn-thionein samples, only the Zn2+ ions were transferred to apo-carbonic anhydrase. Similarity, the Zn2+ ions in isoform I were more reactive with EDTA compared to isoform II. The greater reactivity of isoform I with EDTA was evident kinetically from spectrophotometric assays as well as thermodynamically from equilibrium dialysis experiments. The significance of these differences is unclear, but it is conceivable that the dissimilarities in the conformational and Zn-binding affinity of rat liver metallothionein may correlate with a functional distinction.  相似文献   

4.
Divalent cadmium and mercury ions are capable in vitro of displacement of zinc from metallothionein. This process has now been studied in vivo and ex vivo, using the isolated perfused rat liver system, in order to determine if this process can occur in the intact cell. Rats with normal and elevated (via preinduction with zinc) levels of hepatic zinc thionein were studied. Cd(II) completely displaces zinc from normal levels of metallothionein and on a one-to-one basis from elevated levels of metallothionein, both in vivo and ex vivo. Hg(II) displaces zinc from metallothionein (normal or elevated) rather poorly, as compared with Cd(II), in vivo, probably due to the kidneys preference for absorbing this metal. Ex vivo Hg(II) displaces zinc from metallothionein (normal or elevated) on a one-to-one basis, with considerably more mercury being incorporated into the protein than in vivo. The results of double-label ex vivo experiments using metal and [35S]cysteine (+/- cycloheximide) were consistent with the above experiments, indicating that de novo thionein synthesis was not required for short term incorporation of cadmium and mercury into metallothionein. These data are supportive of the hypothesis that cadmium and mercury incorporation into rat hepatic metallothionein during the first few hours after exposure to these metals can occur primarily by displacement of zinc from preexisting zinc thionein by a process which does not require new protein synthesis.  相似文献   

5.
Two kinds of dotriacontapeptides corresponding to C-terminal sequence 30–61 of human liver metallothionein, both containing 11 cysteine residues, were synthesized by the conventional fragment condensation method employing the HF deprotection or MSA deprotection method at the final step. Their heavy metal (Zn, Cd, or Cu) binding activity was examined, and it was found that their heavy metal binding properties were quite similar to those of native human liver thionein.  相似文献   

6.
    
Two kinds of dotriacontapeptides corresponding to C-terminal sequence 30–61 of human liver metallothionein, both containing 11 cysteine residues, were synthesized by the conventional fragment condensation method employing the HF deprotection or MSA deprotection method at the final step. Their heavy metal (Zn, Cd, or Cu) binding activity was examined, and it was found that their heavy metal binding properties were quite similar to those of native human liver thionein.  相似文献   

7.
Rat liver metallothionein contains two domains, each of which enfolds a separate metal-thiolate cluster. The binding stoichiometry of these clusters depends on the particular metal ion bound. In the aminoterminal beta domain the cluster can accommodate either three Cd(II) ions or six Cu(I) ions. The Cd ions are known to be coordinated in a tetrahedral geometry. In order to better understand the binding of Cu ions in this domain, the Cu-beta domain fragment of metallothionein was prepared and investigated by x-ray absorption spectroscopy. Quantitative analysis of the EXAFS data indicates copper-sulfur distances of 2.25 +/- 0.03 A. The EXAFS amplitudes and distance results are most consistent with trigonal coordination. A trigonal biprism is proposed for the Cu6Cys9 complex in which Cu occupies each vertex and cysteinyl sulfur bridges at each of the nine edges.  相似文献   

8.
9.
Human chorionic gonadotropin (hCG) beta-subunit core fragment (beta-fragment) is present in the urine of pregnant individuals as well as those with trophoblast disease and certain other cancers at concentrations 0.8 (early pregnancy) to 7 (second trimester pregnancy)-fold greater than that of hCG. The core fragment may be directly secreted by trophoblast tissue into the circulation or possibly originates from peripheral degradation of circulating hormone by the kidney. We examined the former hypothesis. We examined 24-h organ cultures of trophoblast tissue from first, second, and third trimester pregnancy. The media from this tissue contained hCG, free beta-subunit, and beta-fragment. The amount of beta-fragment present exceeded that of hCG, as was observed in second and third trimester pregnancy urine. The beta-fragment immunoreactive material produced by trophoblast tissue was compared to a standard preparation of urinary beta-fragment. The material in medium was identical to the standard beta-fragment in its elution pattern from a gel filtration column, from a reverse-phase HPLC column, from an ion-exchange gel, and from an immobilized lectin affinity column, and also by electrophoresis and immunoblotting with fragment-reactive monoclonal antibodies. We conclude that beta-fragment can also originate directly from trophoblast tissue, and could be the principal hCG beta-immunoreactive molecule secreted.  相似文献   

10.
In mammalian metallothioneins the metals are organized in two adamantane-type clusters with three and four metal ions which are tetrahedrally coordinated by thiolate ligands. The metal selectivity of the metal-thiolate clusters in rabbit liver metallothionein has been studied by offering two ions, i.e. Co(II)/Cd(II), Zn(II)/Cd(II) or Co(II)/Zn(II), to the metal-free protein. The heterogeneous metal complexes thus formed were characterized by electronic absorption, magnetic circular dichroism. 113Cd-NMR and EPR spectroscopy. In the case of Co/Cd-metallothionein, homometallic cluster occupation occurs, with the Cd(II) ions bound exclusively to the four-metal cluster. In contrast, heterometallic clusters were formed for both Zn/Cd- and Co/Zn-metallothionein. Based on evidence from corresponding inorganic structures of adamantane metal-thiolate cages, it is suggested that the major factor governing the cluster type is the protein structure perturbation due to the cluster volume variations. Thus, while metal thiolate affinities are important in the folding process, size-match selectivity is the dominant factor in the metal-loaded protein.  相似文献   

11.
Metallothioneins are a class of cysteine-rich and low molecular weight, metal-binding proteins that are inducible by a wide variety of agents, including metal ions, such as cadmium and zinc, glucocorticoid hormones, interferon, and tumor promoters. In an effort to delineate the regulation of the synthesis of the recently identified brain metallothionein-like protein, a study was undertaken to compare the induction of metallothionein in human neuroblastoma IMR-32 cells by zinc, cadmium, and dexamethasone using the human Chang liver cells as a control. Both cadmium (1 microM) and zinc (100 microM) significantly enhanced the incorporation of [35S]cysteine into metallothioneins isolated from both neuroblastoma and Chang liver cells. Dexamethasone in concentrations of 10 microM stimulated the synthesis of metallothionein in the Chang cells, whereas it had no effects on the synthesis of metallothionein in the neuroblastoma cells at concentrations ranging from 2.5--100 microM. The degree of stimulation of metallothionein synthesis in the Chang cells by cadmium and zinc was significantly higher than seen in neuroblastoma cells. The neuroblastoma IMR-32 exhibited less tolerance to the toxicity of both cadmium and zinc than the Chang cells, which may correlate with the inherent ability of these ions to induce metallothioneins in these dissimilar cells. The results of these studies are interpreted to indicate that the factors regulating the synthesis of metallothioneins in the Chang and neuroblastoma cells are not identical, suggesting also of the presence of dissimilar regulatory mechanisms in the liver and brain.  相似文献   

12.
M Good  M Vasák 《Biochemistry》1986,25(11):3328-3334
The C-terminal segment of rabbit liver metallothionein 1 (alpha-fragment) containing four paramagnetic Co(II) ions was obtained by stoichiometric replacement of the originally bound diamagnetic Cd(II) ions. The latter form was prepared by limited proteolysis with subtilisin as described previously [Winge, D. R., & Miklossy, K. A. (1982) J. Biol. Chem. 257, 3471-3476]. Electronic absorption, magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) measurements were employed to monitor the stepwise incorporation of Co(II) ions into the metal-free fragment. Absorption and MCD spectra of the apofragment containing the first 3 Co(II) equiv show the typical features of tetrahedral tetrathiolate Co(II) coordination. However, in the d-d region only small changes in the visible and no apparent change in the near-infrared region are discernible when the fourth Co(II) is bound. This unusual spectral behavior was not seen in Co(II) substitution of native metallothionein [Vasák, M., & K?gi, J. H. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6709-6713] and may indicate a different cluster geometry. In the charge-transfer region, the binding of all 4 Co(II) equiv is accompanied by characteristic increments of the thiolate S----Co(II) bands. As in the formation of Co(II)7-metallothionein, the development of the charge-transfer and EPR spectral properties upon binding of the first 2 Co(II) equiv to the apofragment is indicative of isolated, noninteracting tetrahedral tetrathiolate Co(II) complexes. The binding of the additional Co(II) ion is accompanied by a red shift in the charge-transfer region and by the dramatic loss of paramagnetism in the EPR spectra, both diagnostic of the formation of metal-thiolate cluster structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The plant metallothionein 2 from Cicer arietinum (chickpea; cicMT2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by a linker region 41 amino acids in length. This metallothionein thus differs significantly from the well-studied vertebrate forms. A synthetic gene encoding cicMT2 was designed, cloned into a suitable vector, and the protein was over-expressed in Escherichia coli. For the first time, an in-depth spectroscopic characterization of cicMT2 in the presence of divalent metal ions is performed showing a binding capacity for five Zn(II), Cd(II), or Co(II) ions and the typical features of metal-thiolate clusters. Based on proteolytic digestion experiments, the cluster arrangement formed by the divalent metal ions and the cysteine thiolate groups connects the amino-terminal with the carboxy-terminal cysteine-rich region. The cluster formation process, put into effect with the addition of the fourth metal ion to the apo protein, was investigated using the characteristic shift of absorption bands observed in the UV/Vis spectra upon titration with Co(II). The pH-dependent Zn(II)- and Cd(II)-thiolate cluster stability is one of the highest observed for plant MTs so far, but lower than that usually found in vertebrate metallothioneins. The dependence of the pH stability on the ionic strength of the solution is more pronounced for the Cd(II)- than for the Zn(II)-form of the protein.  相似文献   

14.
Flavonoids are natural compounds found in food items of plant origin. The study examined systematically the interaction of structurally diverse dietary flavonoids with trace metal ions and the potential impact of dietary flavonoids on the function of intestinal cells. Spectrum analysis was first performed to determine flavonoid-metal interaction in the buffer. Among the flavonoids tested, genistein, biochanin-A, naringin, and naringenin did not interact with any metal ions tested. Members of the flavonol family, quercetin, rutin, kaempferol, flavanol, and catechin, were found to interact with Cu(II) and Fe(III). On prolonged exposure, quercetin also interacted with Mn(II). Quercetin at 1:1 ratio to Cu(II) completely blocked the Cu-dependent color formation from hematoxylin. When quercetin was added to the growth medium of cultured human intestinal cells, Caco-2, the level of metal binding antioxidant protein, metallothionein, decreased. The effect of quercetin on metallothionein was dose and time-dependent. Genistein and biochanin A, on the contrary, increased the level of metallothionein. The interaction between dietary flavonoids and trace minerals and the effect of flavonoids on metallothionein level imply that flavonoids may affect metal homeostasis and cellular oxidative status in a structure-specific fashion.  相似文献   

15.
M T Werth  M K Johnson 《Biochemistry》1989,28(9):3982-3988
The electronic and magnetic properties of the Fe(II)-thiolate centers in Fe(II)-metallothionein have been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance spectroscopies at various levels of Fe(II) incorporation. In agreement with previous results [Good, M., & Vasák, M. (1986) Biochemistry 25, 8353-8356], rabbit liver metallothionein was found to bind a maximum of seven Fe(II) ions, with cluster formation occurring when more than four Fe(II) ions are bound at pH 8.5. The results indicate that all the iron in fully loaded Fe(II)-metallothionein is accommodated in Fe(II)-thiolate clusters that have either S = 0 or S = 2 ground states as a result of antiferromagnetic coupling between high-spin Fe(II) ions. By analogy with the cluster composition and mechanism of assembly that have been established for other divalent metal ions, the clusters with S = 0 and S = 2 ground states are attributed to tetranuclear and trinuclear centers, respectively. EPR signals indicative of S = 2 species were observed for samples containing monomeric tetrathiolate-Fe(II) centers and trinuclear Fe(II)-thiolate clusters. However, the nature of the zero-field splitting of the S = 2 ground states that is indicated by the EPR signals is not consistent with that deduced from M?ssbauer and magnetic circular dichroism studies, suggesting heterogeneity in both types of center.  相似文献   

16.
Rabbit liver Cd-metallothionein (CdMT) and Cd-complex of synthetically prepared pentapeptide (gamma-Glu-Cys)2-Gly were studied as examples of animal and plant metallothioneins. Using hanging mercury electrode, cathodic stripping voltammetry after adsorptive accumulation of the Cd(II)-SR complex at different potentials, is suitable for estimating changes occurring in metal coordination due to the presence of metal ions such as Zn2+, Cu2+, Hg2+ or excessive Cd2+. Conditions under which similar behaviour can be observed for both CdMT and Cd-pentapeptide complex are specified. On carbon electrodes, detailed study of reduction processes of Cd(II)-SR complexes is prevented by occurrence of a large catalytic current; oxidation processes are more suitable for study at these electrodes. Carbon composite paste electrode (10% SiO2) allows deposition of Cd(II)-SR complex during its reduction, as was demonstrated with Cd-cysteine, CdMT or Cd-pentapeptide complex. After deposition, oxidation peak of the uncomplexed Cd2+ ions and one or two oxidation peaks corresponding to a formation of the RS-Cd(II) complex are observed. Also, similarly as on Hg electrode, it was observed that excessive Cd2+ or Zn2+ ions influence oxidation peaks of the RS-Cd(II) complex formation. Combination of measurements on mercury electrode and composite paste electrode is recommended for studies of metallothionein interactions with metal ions or other metal complexes.  相似文献   

17.
Activation of pyridoxal kinase by metallothionein   总被引:1,自引:0,他引:1  
Brain pyridoxal kinase, which uses ATP complexed to either Zn(II) or Co(II) as substrates, displays high catalytic activity in the presence of Zn-thionein and Co-thionein. Several steps intervene in the process of pyridoxal kinase activation, i.e., binding of Zn ions to ATP and interaction between Zn-ATP and the enzyme. Equilibrium binding studies show that ATP mediates the release of Zn ions from the metal-thiolate clusters of the thioneins, whereas spectroscopic measurements conducted on Co-thionein reveal that the absorption transitions corresponding to the metal-thiolate of the protein are perturbed by ATP. The binding Zn-ATP to the kinase proceeds with a delta G = -6.3 kcal/mol as demonstrated by fluorometric titrations. Direct interaction between the kinase and derivatized-metallothionein could not be detected by emission anisotropy measurements, indicating that juxtaposition of the proteins does not influence the exchange of metal ions. Since the concentration of free Zn in several mammalian tissues is lower than 1 nM, it is postulated that under in vivo conditions the concentration of metallothionein regulates the catalytic activity of pyridoxal kinase.  相似文献   

18.
19.
We report here the complete nucleotide sequence of rat ribophorin II. The predicted amino acid sequence is highly homologous to the corresponding human protein and consists of 631 amino acid residues, including a 22 amino acid N-terminal cleavable signal sequence, and a single 23 amino acid putative transmembrane domain. Northern blot analysis reveals a single -2.4 kb message expressed in a number of rat cell lines and in adult liver. The gene was mapped to mouse chromosome 2, close to the Src proto-oncogene.  相似文献   

20.
A study was carried out on the uptake of copper, zinc, or cadmium ions and their induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells. The main difference between Menkes' and normal cells in the uptake of these metal ions was an increased uptake of copper ions in Menkes' cells at a low concentration of CuCl2 (2.1 microM). The CuCl2 concentration necessary to induce metallothionein synthesis in Menkes' cells was 50 microM, whereas that in normal cells was about 200 microM. The levels of zinc or cadmium ions needed to induce metallothionein in Menkes' cells were similar to those in normal cells. At least four isomers of metallothionein were induced by copper, zinc, and cadmium ions in both types of cells. Metallothionein synthesis in Menkes' and normal cells was induced when the amounts of intracellular copper reached a threshold level of approximately 0.2 nmol/10(6) cells, and the rate of metallothionein synthesis in these cells was increased as a function of the amounts of intracellular copper (0.2-1.7 nmol/10(6) cells). These results indicate that the induction of metallothionein synthesis in lymphoblastoid cells is controlled by the level of intracellular copper, suggesting that the major defect in Menkes' cells is not due to the abnormal regulation of metallothionein synthesis but to an alteration of the copper metabolism in cells by which the levels of intracellular copper become larger than those in normal cells and just lower than the threshold level for induction of metallothionein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号