首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Rainbow trout swimbladder epithelium consists of non-ciliated and ciliated cells in the ratio of greater than 21. Non-ciliated cells contain vesicles filled with a mucus-like material and similar material is found lining the surface of the swimbladder lumen. Morphological evidence for discharge of the vesicle contents was obtained. In addition, nonciliated cells contain osmiophilic lamellar bodies which resemble the cytosomes of lung alveolar cells of air-breathing vertebrates. The non-ciliated cells do not appear to be involved in a process of active gas secretion.Supported by a research grant from the American Cancer Society, Oregon Division, Inc.  相似文献   

2.
A morphologic and cytochemical study on the great alveolar cell.   总被引:26,自引:0,他引:26  
Lungs from marsupials, bats and rodents were studied by light and electron microscopy. In all three groups, the great alveolar cells exhibit similar morphologic and cytochemical characteristics. Cytoplasmic vacuoles seen in these cells by light microscopy correspond to cytosomes that are demonstrable in them by electron microscopy. Such cytosomes are osmiophilic, periodic acid-Schiff-positive and stainable with Sudan black after acetone extraction. After fixation in a mixture of aldehydes, followed by extraction in chloroform-methanol and postfixation in osmium tetroxide, cytosomes lose their osmiophilia. The cytoplasm of the great alveolar cell is notable for a loosely ordered granular endoplasmic reticulum, an extensive Golgi apparatus and numerous multivesicular bodies. Many forms transitional in appearance between multivesicular bodies and cytosomes are present. In these, osmiophilic matter occupies the intervesicular space. It is proposed that these bodies are the precursors of cytosomes. The cytosomes are interpreted to be products of the "lysosomal" system in this cell. Ultimately they are secreted onto the alveolar surface.  相似文献   

3.
Summary The columnar epithelial cells of the gas gland in the swimbladder of the toadfish, Opsanus tau L., contain lamellar bodies that resemble the lamellar bodies found in epithelial cells of vertebrate lungs. Cytochemical assays indicate that swimbladder lamellar bodies are soluble in chloroform-methanol solution, react with tricomplex flocculation solution (indicating a phospholipid component), exhibit a positive reaction for cholesterol when exposed to digitonin, and contain acid phosphatase.The anterior chamber of the toadfish swimbladder is lined by an extracellular layer. Digitonin-cholesterol crystals are found in this layer when the swimbladder is treated with digitonin. A ruthenium red positive layer is also present in the anterior chamber of the toadfish swimbladder.The structure and cytochemistry of swimbladder lamellar bodies are compared with those of vertebrate lung lamellar bodies. Similarities between the extracellular layer in the swimbladder and the extracellular layer in lungs are also noted.Supported in part by a grant No 1 R23 HL 19593-01 from the National Institutes of Health  相似文献   

4.
This paper describes the preparation of lung acellular alveolar matrix fragments and culture of rat type II pneumocytes directly on the alveolar epithelial basement membrane, thereby permitting study of the effect of lung basement membrane on the morphology and function of type II cells. Collagen types I, III, IV and V, laminin and fibronectin were located by immunofluorescence in the lung matrix with the same patterns as those described for the normal human lung. Transmission electron microscopy (TEM) of the fragments revealed intact epithelial and endothelial basement membranes. The matrix maintained the normal three-dimensional alveolar architecture. Glycosaminoglycans were still present by Alcian Blue staining. Isolated adult rat type II pneumocytes cultured on 150 micron thick fragments of acellular human alveolar extracellular matrix undergo gradual cytoplasmic flattening, with loss of lamellar bodies, mitochondria, and surface microvilli. These changes are similar to the in vivo differentiation of type II pneumocytes into type I pneumocytes. The type II pneumocyte behaviour on the lung epithelial basement membrane contrasted sharply with that of the same cell type cultured on a human amnionic basement membrane. On the latter surface the cells retained their cuboidal shape, lamellar bodies and surface microvilli for up to 8 days. These observations suggest that the basement membranes from different organ systems exert differing influences on the morphology and function of type II pneumocytes and that the alveolar and amnionic basement membranes may have differing three-dimensional organizations. The technique of direct culture of type II cells on the lung basement membrane provides a useful tool for studying the modulating effect of the basement membrane on alveolar epithelial cells.  相似文献   

5.

Background

In patients with acute respiratory failure, gas exchange is impaired due to the accumulation of fluid in the lung airspaces. This life-threatening syndrome is treated with mechanical ventilation, which is adjusted to maintain gas exchange, but can be associated with the accumulation of carbon dioxide in the lung. Carbon dioxide (CO2) is a by-product of cellular energy utilization and its elimination is affected via alveolar epithelial cells. Signaling pathways sensitive to changes in CO2 levels were described in plants and neuronal mammalian cells. However, it has not been fully elucidated whether non-neuronal cells sense and respond to CO2. The Na,K-ATPase consumes ∼40% of the cellular metabolism to maintain cell homeostasis. Our study examines the effects of increased pCO2 on the epithelial Na,K-ATPase a major contributor to alveolar fluid reabsorption which is a marker of alveolar epithelial function.

Principal Findings

We found that short-term increases in pCO2 impaired alveolar fluid reabsorption in rats. Also, we provide evidence that non-excitable, alveolar epithelial cells sense and respond to high levels of CO2, independently of extracellular and intracellular pH, by inhibiting Na,K-ATPase function, via activation of PKCζ which phosphorylates the Na,K-ATPase, causing it to endocytose from the plasma membrane into intracellular pools.

Conclusions

Our data suggest that alveolar epithelial cells, through which CO2 is eliminated in mammals, are highly sensitive to hypercapnia. Elevated CO2 levels impair alveolar epithelial function, independently of pH, which is relevant in patients with lung diseases and altered alveolar gas exchange.  相似文献   

6.
Zusammenfassung Das Alveolarepithel der Froschlunge weist nur einen einzigen Zelltyp auf. Die Zellkörper sitzen in den Nischen zwischen den Kapillaren, die sie mit Zytoplasmaausläufern überdecken. Die Epithelzellen enthalten große Zytosomen mit osmiophilen Lamellen mit einer Periode von 40–42 Å. Sie sind den Typ II-Pneumozyten der Säugerlunge vergleichbar.Das Alveolarepithel der Froschlunge ist mit einer Grenzschicht bedeckt, die in Abhängigkeit von der Fixierung eine 40–42 Å-Periode aufweist oder aus einer oder mehreren Doppelmembranen zusammengesetzt ist. Gittermuster und Myelinfiguren sind vorhanden. Das bedeutet, daß Surfactant in der Froschlunge in gleicher Weise wie in der Säugerlunge dargestellt werden kann.
Electron microscopic studies on the lung of the frogI. Demonstration of the alveolar lining layer (surfactant)
Summary The alveolar epithelium of the frog exhibits only one type of cells. The cell-bodies are situated in the spaces among the capillaries, which they cover with cytoplasmic extensions. The epithelial cells contain large bodies (cytosomes) with osmiophilic lamellae having a period of 40–42 Å. The alveolar cells are considered to be similar to the type II-pneumocytes of mammalian lungs.The alveolar epithelium of the lung of the frog is covered with a lining layer, which depending on the method of fixation consists of periods of 40–42 Å or of one or more double membranes. Lattice formations and myelin figures are seen. This means that the surfactant in the lung of the frog can be demonstrated in the same way as in mammalian lungs.
  相似文献   

7.
8.
A monoclonal antibody that identifies a membrane molecule unique in rat lung for type II alveolar epithelial cells was used to isolate these cells from enzymatically dispersed lung cells by fluorescence-activated cell sorting. Although multistep physical separation techniques have permitted the isolation of large quantities of these cells and flow cytometry has been used by others to isolate lamellar body-containing cells, the application of this antibody-directed sorting has distinct advantages. Because the marker molecule is expressed on immature type II cells prior to the development of lamellar bodies, the antibody will also permit their isolation and study.  相似文献   

9.
Lipid bodies are non-membrane-bound, lipid-rich cytoplasmic inclusions that occur in many mammalian cell types. Because lipid bodies are more prominent in cells associated with inflammation and are repositories of arachidonyl-phospholipids, a role for lipid bodies in the oxidative metabolism of arachidonic acid to form eicosanoids has been suggested. To evaluate further whether lipid bodies, in addition to serving as non-membranous sources of substrate arachidonate, are involved in eicosanoid formation, we used cells isolated from human lung to investigate the intracellular localization of prostaglandin endoperoxide (PGH) synthase (cyclooxygenase), the key initial, rate-limiting enzyme in the formation of prostaglandins and thromboxanes. Isolated lung cells containing a mixture of mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils from short-term cultures were fixed in suspension in a dilute aldehyde mixture, post-fixed in osmium tetroxide, stained en bloc with uranyl acetate, dehydrated in a graded series of alcohols, and embedded in Epon. A post-embedding immunogold procedure was used with a primary PGH synthase monoclonal antibody and 20-nm gold-conjugated secondary antibody to demonstrate enzyme locations. Specificity controls were also done. We found PGH synthase in lipid bodies of human lung mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils. Specific secretory and lysosomal granules and plasma membranes did not express PGH synthase. Specificity controls, including omission of the primary antibody or substitution with an irrelevant antibody, were negative. Absorption of the specific PGH synthase antibody with purified solid-phase PGH synthase resulted in a marked reduction of label in lipid bodies of all four cell types. These findings establish the presence of PGH synthase in lipid bodies of human lung mast cells, alveolar macrophages, Type II alveolar pneumocytes, and neutrophils and, in concert with previous studies, suggest that these cytoplasmic lipid-rich organelles may be non-membrane sites of eicosanoid formation.  相似文献   

10.
Despite decades of research, the pathogenesis of acute respiratory distress syndrome (ARDS) remains poorly understood, thus impeding the development of effective treatment. Diffuse alveolar damage (DAD) and lung epithelial cell death are prominent features of ARDS. Lung epithelial cells are the first line of defense after inhaled stimuli, such as in the case of hyperoxia. We hypothesized that lung epithelial cells release ‘messenger'' or signaling molecules to adjacent or distant macrophages, thereby initiating or propagating inflammatory responses after noxious insult. We found that, after hyperoxia, a large amount of extracellular vesicles (EVs) were generated and released into bronchoalveolar lavage fluid (BALF). These hyperoxia-induced EVs were mainly derived from live lung epithelial cells as the result of hyperoxia-associated endoplasmic reticulum (ER) stress. These EVs were remarkably different from epithelial ‘apoptotic bodies'', as reflected by the significantly smaller size and differentially expressed protein markers. These EVs fall mainly in the size range of the exosomes and smaller microvesicles (MVs) (50–120 nm). The commonly featured protein markers of apoptotic bodies were not found in these EVs. Treating alveolar macrophages with hyperoxia-induced, epithelial cell-derived EVs led to an increased secretion of pro-inflammatory cytokines and macrophage inflammatory protein 2 (MIP-2). Robustly increased macrophage and neutrophil influx was found in the lung tissue of the mice intranasally treated with hyperoxia-induced EVs. It was determined that EV-encapsulated caspase-3 was largely responsible for the alveolar macrophage activation via the ROCK1 pathway. Caspase-3-deficient EVs induced less cytokine/MIP-2 release, reduced cell counts in BALF, less neutrophil infiltration and less inflammation in lung parenchyma, both in vitro and in vivo. Furthermore, the serum circulating EVs were increased and mainly derived from lung epithelial cells after hyperoxia exposure. These circulating EVs also activated systemic macrophages other than the alveolar ones. Collectively, the results show that hyperoxia-induced, lung epithelial cell-derived and caspase-3 enriched EVs activate macrophages and mediate the inflammatory lung responses involved in lung injury.Acute lung injury (ALI) and its severe form, ARDS cause significant morbidity and mortality in critically-ill patients.1 ALI often presents with extensive accumulation of activated inflammatory cells and diffuse alveolar damage (DAD) accompanied by oxidative stress.2 Lung epithelial cell damage, a prominent feature of both infectious and non-infectious lung injury, potentially has an important functional role in the pathogenesis of the overwhelming inflammation and vascular leaking involved in ALI/ARDS.3, 4 However, it remains incompletely understood how lung inflammation is initiated and propagated during the development of lung injury, particularly by non-infectious stimuli. For example, oxidative stress, such as occurs with the inspiration of a high concentration of oxygen, could lead to reactive oxygen species (ROS) production, inflammasome activation, pro-inflammatory cytokine production, neutrophil influx and lung inflammation,5, 6 resulting in severe lung injury and respiratory failure. It has been reported that the deposition of extracellular matrix (ECM) has a role in this process.7 Therefore, the cross-talk between damaged epithelial cells and lung inflammation cells during the development of non-infectious lung injury needs to be explored to properly understand the development of ALI/ARDS.Hyperoxia-induced ALI (HALI) is a well-established, non-infectious animal model that mimics human ARDS and has been used extensively by investigators to better understand the pathogenesis of this devastating syndrome.8 Oxidative stress, such as occurs with hyperoxia and its derivative ROS, can induce epithelial cell death via apoptosis, autophagic cell death, necrosis and many other pathways.9 Prolonged exposure to a high concentration of oxygen is fatal in most animal models, resulting in neutrophil influx and alveolar edema.6 However, despite the fact that mouse HALI is a good model of human ARDS, mortality in rodents often results from severe cerebral edema.6 Activated alveolar macrophage-released chemokines/cytokines are essential to neutrophil recruitment.6 That said, how the oxidative stress specifically activates alveolar macrophages has not been well elucidated. In this study, we used the mouse model of HALI to evaluate the cross-talk between damaged lung epithelial cells and alveolar macrophages during the development of HALI via epithelial cell-derived EVs.For a long time, EVs were considered membrane debris without any specific biological function.10 Recently, accumulating data have suggested that EVs are in fact crucial mediators of intercellular communications.11, 12, 13 EVs are categorized into exosomes, microvesicles and apoptotic bodies based on their origin, size and content.10 The exosome is 40–120 nm in size and is originated from the endo-lysosomal pathway, intraluminal budding or the fusion of multivesicular bodies with the cell membrane. It is characterized by holding plasma membrane proteins such as the tetraspanin (CD9, CD63, CD81 and so on) and lipid raft proteins (flotillin and caveolin-1).14 The exosome also contains mRNA and microRNA (miRNA) as well as cytoplasmic and membrane proteins. It is secreted from majority of cells, including macrophages, dendritic cells and epithelial cells among many others. Microvesicles (MVs) are 50–1000 nm in size and are originated from the outward budding of the cell membrane.10 MVs contain membrane proteins, mRNA, miRNA, non-coding RNAs and cytoplasmic proteins.10 Apoptotic bodies are significantly larger than exosomes and MVs, averaging 500–2000 nm, and are generated from the surface of apoptotic cells.10 They are characterized by a large amount of phosphatidylserine, cell organelles, nuclear fractions and certain marker proteins, such as Apaf-1.10 Both infection and toxic insults have been reported to facilitate the generation of EVs.15, 16, 17 EVs are reported to have similar cellular functions as their mother cells.10, 18 For instance, resting macrophage-originated MVs exert an anti-inflammatory effect, whereas macrophage-originated MVs are pro-inflammatory after LPS stimulation.19 Although EVs appear promising candidates for intercellular communication, their roles in lung cells, particularly in the pathogenesis of ALI, have not been reported.We hypothesized that hyperoxia-associated oxidative stress stimulates EV generation in lung epithelial cell and that epithelial cell-derived EVs facilitate the development of inflammatory lung responses after oxidative stress. We further explored the components in epithelial cell-derived EVs after hyperoxia. The underlying mechanisms by which EVs exert their pro-inflammatory effects on alveolar macrophages were also determined. To the best of our knowledge, this is the first study focusing on the role of EVs in the pathogenesis of hyperoxia-induced ALI, the intercellular cross-talk between epithelial cells and alveolar macrophages, as well as the relationship between cell death and pro-inflammatory signals.  相似文献   

11.
It is well established that hyperoxia injures and kills alveolar endothelial and type I epithelial cells of the lung. Although type II epithelial cells remain morphologically intact, it remains unclear whether they are also damaged. DNA integrity was investigated in adult mice whose type II cells were identified by their endogenous expression of pro-surfactant protein C or transgenic expression of enhanced green fluorescent protein. In mice exposed to room air, punctate perinuclear 8-oxoguanine staining was detected in approximately 4% of all alveolar cells and in 30% of type II cells. After 48 or 72 h of hyperoxia, 8-oxoguanine was detected in 11% of all alveolar cells and in >60% of type II cells. 8-Oxoguanine colocalized by confocal microscopy with the mitochondrial transmembrane protein cytochrome oxidase subunit 1. Type II cells isolated from hyperoxic lungs exhibited nuclear DNA strand breaks by comet assay even though they were viable and morphologically indistinguishable from cells isolated from lungs exposed to room air. These data reveal that type II cells exposed to in vivo hyperoxia have oxidized and fragmented DNA. Because type II cells are essential for lung remodeling, our findings raise the possibility that they are proficient in DNA repair.  相似文献   

12.

Background

Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population.

Methods

EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells).

Results

Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor.

Conclusion

PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation.  相似文献   

13.

Background

Chronic alcohol abuse causes oxidative stress and impairs alveolar epithelial barrier integrity, thereby rendering the lung susceptible to acute edematous injury. Experimentally, alcohol-induced oxidative stress increases the expression of transforming growth factor β1 (TGFβ1) in the lung; however, we do not know the precise contribution of various alveolar cells in this process. In the present study, we focused on cell-cell interactions between alveolar macrophages and epithelial cells and the potential mechanisms by which TGFβ1 may become activated in the alveolar space of the alcoholic lung.

Methods

Primary alveolar macrophages and epithelial cells were isolated from control- and alcohol-fed Sprague–Dawley rats. Expression of TGFβ1 and the epithelial integrin αvβ6 were examined by real time PCR and either immunocytochemistry or flow cytometry. Alveolar epithelial cells were cultured on transwell supports in the presence of macrophage cell lysate from control- or alcohol-fed rats or in the presence of viable macrophages ± alcohol. Epithelial barrier function was assessed by transepithelial resistance (TER) and paracellular flux of Texas Red dextran.

Results

TGFβ1 expression was increased in alveolar macrophages from alcohol-fed rats, and TGFβ1 protein was predominantly membrane-bound. Importantly, alveolar macrophage cellular lysate from alcohol-fed rats decreased TER and increased paracellular dextran flux in primary alveolar epithelial cell monolayers as compared to the lysates from control-fed rats. Alcohol-induced epithelial barrier dysfunction was prevented by anti-TGFβ1 antibody treatment, indicating the presence of bioactive TGFβ1 in the macrophage lysate. In addition, co-culturing macrophages and epithelial cells in the presence of alcohol decreased epithelial barrier function, which also was prevented by anti-TGFβ1 and anti-αvβ6 treatment. In parallel, chronic alcohol ingestion in vivo, or direct treatment with active TGFβ1 in vitro, increased the expression of αvβ6 integrin, which is known to activate TGFβ1, in alveolar epithelial cells.

Conclusions

Taken together, these data suggest that interactions between alveolar epithelial cells and macrophages contribute to the alcohol-mediated disruption of epithelial barrier function via the expression and activation of TGFβ1 at points of cell-cell contact.  相似文献   

14.

Background

LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy.

Methods

Mouse lung cells were sorted on the basis of CD45negCD31negEpCAMposLysoTrackerpos expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media.

Results

The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTrackerpos AT2 cells generated SP-Cpos alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells.

Conclusions

This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.  相似文献   

15.
Caveolae are omega-shaped invaginations of the plasmalemma possessing a cytoplasmic membrane protein coat of caveolin. Caveolae are present in the in vivo alveolar epithelial type I (ATI) lung cell, but absent in its progenitor, the alveolar epithelial type II (ATII) cell. In primary culture ATII cells grown on a plastic substratum acquire with time an ATI-"like" phenotype. We demonstrate that freshly isolated rat ATII cells lack caveolae and expression of caveolin-1 (a critical caveolae structural protein). As the ATII cells acquire an ATI-like phenotype in primary culture caveolin-1 expression increases, with caveolin-1 signal at 192 h postseeding up to 50-fold greater than at 60 h; caveolae were morphologically evident only after 132 h. When maintaining the differentiated ATII phenotype with time, i.e., culture upon collagen with an apical interface of air, a temporal increase in caveolin-1 expression was not observed, with only very faint signals evident even at 192 h postseeding; at no time did these cultures display caveolae. In late primary ATII cultures caveolin-1 expression and caveolae biogenesis occur as a function of in vitro transformation from the ATII to the ATI-like phenotype. The results have broad implications for the in vitro study of the role of caveolae and caveolin in alveolar epithelial cell biology.  相似文献   

16.
Summary The general structure, ultrastructure and innervation of the swimbladder of the smooth toadfish, Tetractenos glaber, were examined with light-microscopic, fluorescence-histochemical, and transmission electron-microscopic techniques. The structure of the swimbladder is similar to that of other euphysoclists. Fluorescence histochemistry showed adrenergic fibres in both the secretory and resorptive areas of the swimbladder. Transmission electron microscopy revealed two morphologically distinct axon profiles type-I profiles containing many small, flattened vesicles; type-II profiles containing both large, granular vesicles and rounded, small clear vesicles in varying proportions.The gas-gland cells and surrounding muscularis mucosae are innervated by both type-I and type-II fibres. Type-I fibres also innervate pre-rete arteries. The rete- and gas-gland capillaries do not appear to be innervated. Arteries running to the resorptive area are innervated by type-I fibres. Both type-I and type-II profiles make contact with the muscularis mucosae in the resorptive area. Only type-I fibres innervate the radial dilator muscle in the oval sphincter region, whereas only type II fibres innervate the circular muscle of the oval sphincter.Type-I fibres took up -methyl-noradrenaline, and could not be found after pre-treatment with 6-hydroxydopamine. They are, therefore, assumed to be adrenergic. Type-II fibres were tentatively identified, by exclusion, as cholinergic.  相似文献   

17.
Summary The anterior chamber of the swimbladder of the toadfish Opsanus tau L. is lined by a single layer of columnar gas gland cells, cuboidal cells that resemble gas gland cells but are located outside of the gas gland region, and squamous cells. Multilamellar bodies are numerous in the gas gland cells and the cuboidal cells and are present in smaller numbers in the squamous cells. Capillaries lie in the lamina propria directly below the epithelial lining. A thick continuous muscularis mucosae and a submucosa consisting of tightly packed cells, cell processes, and connective tissue may contribute to the impermeability to gases of the wall of the anterior chamber.The posterior chamber of the swimbladder is lined by a single type of squamous epithelial cell. Multilamellar bodies were occasionally observed in these cells also. Other types of cells frequently form a partial second layer between the epithelial lining and the basement lamina. A thin muscularis mucosae lies directly below the basement lamina and the capillaries of the posterior chamber are located in the submucosa. The tunica externa is a layer of dense connective tissue that surrounds both the anterior and posterior chambers. Collagen fibrils in the form of tactoids are present in this layer.Part of this work was submitted by S.M.M. in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Biology Department, Boston University. S.M.M. is grateful for a National Science Foundation Traineeship.  相似文献   

18.
Caveolae are flask-shaped invaginations of the plasmalemma which pinch off to form discrete vesicles within the cell cytoplasm. Biochemically, caveolae may be distinguished by the presence of a protein, caveolin, that is the principal component of filaments constituting their striated cytoplasmic coat. Squamous alveolar epithelial type I (ATI) cells, comprising approximately 95% of the surface area of lung alveolar epithelium, possess numerous plasmalemmal invaginations and cytoplasmic vesicles ultrastructurally indicative of caveolae. However, an ultrastructural appearance does not universally imply the biochemical presence of caveolin. This immunocytochemical study has utilised a novel application of confocal laser scanning and electron microscopy unequivocally to localise caveolin-1 to ATI cells. Further, cytoplasmic vesicles and flask-shaped membrane invaginations in the ATI cell were morphologically identified whose membranes were decorated with anti-caveolin-1 immunogold label. Coexistent with this, however, in both ATI and capillary endothelial cells could be seen membrane invaginations morphologically characteristic of caveolae, but which lacked associated caveolin immunogold label. This could reflect a true biochemical heterogeneity in populations of morphologically similar plasmalemmal invaginations or an antigen threshold requirement for labelling. The cuboidal alveolar epithelial type II cell (ATII) also displayed specific label for caveolin-1 but with no ultrastructural evidence for the formation of caveolae. The biochemical association of caveolin with ATI cell vesicles has broad implications for the assignment and further study of ATI cell function.  相似文献   

19.

Rationale

Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure.

Methods

To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls.

Results

Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death.

Conclusions

These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.  相似文献   

20.
Yin A  Korzh S  Winata CL  Korzh V  Gong Z 《PloS one》2011,6(3):e18431
BACKGROUND: Wnt signaling plays critical roles in mammalian lung development. However, Wnt signaling in the development of the zebrafish swimbladder, which is considered as a counterpart of mammalian lungs, have not been explored. To investigate the potential conservation of signaling events in early development of the lung and swimbladder, we wish to address the question whether Wnt signaling plays a role in swimbladder development. METHODOLOGY/PRINCIPAL FINDINGS: For analysis of zebrafish swimbladder development, we first identified, by whole-mount in situ hybridization (WISH), has2 as a mesenchymal marker, sox2 as the earliest epithelial marker, as well as hprt1l and elovl1a as the earliest mesothelial markers. We also demonstrated that genes encoding Wnt signaling members Wnt5b, Fz2, Fz7b, Lef1, Tcf3 were expressed in different layers of swimbladder. Then we utilized the heat-shock inducible transgenic lines hs:Dkk1-GFP and hs:ΔTcf-GFP to temporarily block canonical Wnt signaling. Inhibition of canonical Wnt signaling at various time points disturbed precursor cells specification, organization, anterioposterior patterning, and smooth muscle differentiation in all three tissue layers of swimbladder. These observations were also confirmed by using a chemical inhibitor (IWR-1) of Wnt signaling. In addition, we found that Hedgehog (Hh) signaling was activated by canonical Wnt signaling and imposed a negative feedback on the latter. SIGNIFICANCE/CONCLUSION: We first provided a new set of gene markers for the three tissue layers of swimbladder in zebrafish and demonstrated the expression of several key genes of Wnt signaling pathway in developing swimbladder. Our functional analysis data indicated that Wnt/β-catenin signaling is required for swimbladder early development and we also provided evidence for the crosstalk between Wnt and Hh signaling in early swimbladder development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号