首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of oxygen exchange between phosphate and water has been measured for the calcium-regulated magnesium-dependent ATPase activity of chemically skinned fibers from rabbit skeletal muscle. The oxygen exchange was determined for isometrically held fibers by measuring with a mass spectrometer the distribution of 18O atoms in the product inorganic phosphate when ATP hydrolysis was carried out in H2(18)O. The extent of exchange was much greater in relaxed muscle (free Ca2+ less than 10(-8) M) than in calcium-activated muscle (free Ca2+ approximately equal to 3 X 10(-5) M). Activated fibers had an ATPase activity at least 30-fold greater than the relaxed fibers. These results correlate well with the extents of oxygen exchange accompanying magnesium-dependent myosin and unregulated actomyosin ATPase activities, respectively. In relaxed fibers, comparison of the amount of exchange with the ATPase activity suggests that the rate constant for the reformation of myosin-bound ATP from the myosin products complex is about 10 s-1 at 20 degrees C and pH 7.1. In each experiment the distribution of 18O in the Pi formed was incompatible with a single pathway for ATP hydrolysis. In the case of the calcium-activated fibers, the multiple pathways for ATP hydrolysis appeared to be an intrinsic property of the actomyosin ATPase in the fiber. These results indicate that in muscle fibers, as in isolated actomyosin, cleavage of protein-bound ATP is readily reversible and that association of the myosin products complex with actin promotes Pi release.  相似文献   

2.
The change in the distribution of the phosphate species containing 0 to 4 18O oxygens per Pi was investigated during medium Pi equilibrium HOH exchange catalyzed by myosin subfragment 1. At 25 degrees C, a Pi molecule once bound loses an average of 3.9 of its original 4 oxygens prior to release which means that at least 100 reversals of the exchange reaction must have occurred. At 0 degrees C, only 3.4 of the 4 oxygens are lost prior to release indicating an average of 17 reversals. Distribution patterns are consistent with equivalent participation in the exchange reactions of all 4 oxygens of bound Pi. The intermediate exchange of Pi oxygens during hydrolysis of 18O-labeled ATP by myosin has also been investigated. The distribution of the product Pi species shows that there is an ATPase component in myosin preparations which hydrolyzes ATP without intermediate exchange. Presence of this component, which is likely a contaminating ATPase, provides a simple explanation of the apparent nonequivalence of phosphate oxygens which has been observed. When correction is made for this contaminant, characteristics of the myosin intermediate Pi equilibrium HOH exchange are similar to those of myosin subfragment 1 medium exchange, and intermediate exchange data are in much closer agreement with other kinetic measurements.  相似文献   

3.
The phosphate burst of cardiac myosins from different animal species was studied by a rapid quench-flow technique. The rate constant of the phosphate burst varied from one species to another. Moreover it was lower for cardiac myosins than for skeletal myosin. The phosphate burst rate correlated with the ATPase in the steady state and with the muscle-shortening speed. By contrast, the amplitude of the phosphate burst did not vary significantly. Its value was 0.8--0.9 per myosin site for each of the myosins studied. Deviations from this stoichiometry were related to the mode of preparation of the myosin and to denaturation by a high pH.  相似文献   

4.
The binding of ADP to subfragment-1 was investigated by the gel filtration method. The amount of bound ADP was determined as a function of free ADP concentration. Linear Scatchard plots were obtained. The maximum binding number, 0.55 mole of ADP per 10(5) g of protein, and the dissociation constant, 1.6 x 10(-6) M, were obtained, using subfragment-1 prepared by tryptic digestion, in the presence of 0.083 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 25 degrees. Similar maximum numbers, about 0.5 mole per 10(5) g of protein, were obtained with subfragment-1 prepared by chymotryptic digestion of myosin or papain digestion of myofibrils. The maximum number did not depend on the KCl concentration or the temperature, while the dissociation constant decreased on decreasing either the KCl concentration or the temperature. Adenylyl imidodiphosphate binding to subfragment-1 prepared by chymotryptic digestion was also measured by the gel filtration method. The maximum binding number, 0.41 mole per 10(5) g of subfragment-1, and the dissociation constant, less than 10(-7) M, were obtained in the presence of 0.7 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 8 degrees. The difference absorbance at 288 nm of the difference absorption spectrum induced by ADP of subfragment-1 prepared by tryptic digestion was proportional to the amount of bound ADP. The steady-state ATPase rate of subfragment-1 prepared by tryptic digestion was inhibited competitively by ADP in the presence of MgCl2. The extent of the initial burst of ATPase [EC 3.6.1.3] decreased from 0.46 +/- 0.06 to 0.30 +/- 0.09 mole of Pi per 10(5) g of subfragment-1 on adding ADP to a level of 0.6 mM. Subfragment-1 prepared by tryptic digestion bound F-actin with a mole ratio of 1/0.96 of actin monomer. The binding was depressed by the addition of ADP. On the basis of these results, subfragment-1 preparations were assumed to be a half-and-half mixture of two kinds of protein, and properties of each protein are discussed.  相似文献   

5.
We have used the technique of phosphate: water oxygen exchange to measure the rate of ATP and Pi release and Pi binding to myosin subfragment 1 and actomyosin subfragment 1 from rabbit skeletal muscle. The oxygen exchange distributions for ATP and Pi release fit a simple kinetic model with a single set of rate constants for each step. For actomyosin subfragment 1 (20 degrees C, pH 7.0, I = 50 mM), the rate constant governing ATP release is approximately 8 s-1, Pi release is at approximately 60 s-1 and Pi rebinds to an ADP state at greater than 120 M-1 s-1. These rate constants are similar to those that may occur for undistorted cross-bridges within glycerinated rabbit psoas fibers (Bowater, R., Webb, M. R., and Ferenczi, M. A. (1989) J. Biol. Chem. 264, 7193-7201.  相似文献   

6.
We evaluated the possibility that oxyions of vanadium might react with molybdate and, in that manner, interfere with the Fiske-Subbarow colorimetric determination of inorganic phosphate. Phosphate (Pi) standard curves were prepared (0.03-0.30 mumole/ml) in the presence and absence of oxyvanadium solutions (2 X 10(-4) M) prepared from ortho- and metavanadate. Molybdate prepared in 5 N sulfuric acid was added to each standard. Upon addition of a reducing agent to develop color of the phosphomolybdate complex, a less intense color was observed at any given Pi concentration in the presence of oxyvanadium species. The slope of the regression line for the Pi standard curve in the presence of 2 X 10(-4) M oxyvanadium species was markedly depressed. The effect of oxyvanadium was similar when solutions were prepared from ortho- and metavanadate, despite differences in pH of these solutions. In addition, in the final reaction the pH was similar in the presence and absence of oxyvanadium, independent of the source of vanadate used to prepare solutions. Thus, interference by oxyvanadium did not appear to be related to changes in pH of samples containing vanadium oxyions. Interference was concentration dependent and the minimal concentration of vanadium oxyions that interfered was 5 X 10(-5) M. The effects of oxyvanadium (2 X 10(-4) M) on Mg+2-dependent and Na+-K+-ATPase activities in a renal microsomal preparation were then evaluated through the measurement of inorganic phosphate generation. Enzyme activities were determined with and without correction for interference by oxyvanadium with the method of Fiske and Subbarow. A significant artifactual depression of Mg+2 ATPase activity, but not Na+-K+-ATPase activity, was consistently observed when enzyme activities were not corrected for interference by oxyvanadium with the measurement of inorganic phosphate. These data indicate that when effects of high vanadate concentrations (5 X 10(-5) M) on ATP hydrolyzing enzymes are evaluated through changes in Pi generation, artifactual depression of enzyme activity may occur.  相似文献   

7.
In the rapid “quench” kientics of myosin, the “initial phosphate burst” is the excess inorganic phosphate that is produced during the early time-course of ATP hydrolysis by myosin subfragment-1 (S-1) or HMM. In general, the existence of a Pi burst implies a rapid (i.e., generally an order of magnitude faster than the steady-state hydrolysis rate) lysis of the phospho-anhydride bond within the ATP molecule, followed by one or more slower steps that are rate limiting for the process. Thus, the presence of a Pi burst can provide an important clue to the mechanism of the reaction. However, in the case of actomyosin, this clue as long been the subject of controversy and misunderstanding. To measure the (initial) Pi burst, myosin S-1 (or HMM) is rapidly mixed with ATP and then the mixture is acid quenched after a specific time period. The medium produced contains free Pi generated from hydrolysis of the ATP. The quantitative measure of the phosphate generated in this way has always been significantly greater than that expected by steady-state “release” of Pi alone, and it is that very difference between this measured Pi after the quench and that amount of Pi expected to be released by steady-state considerations in that same time period that has been referred to as the “initial Pi burst”. Recent investigations of the kinetics of Pi release have used an entirely new method that directly measures the release of Pi from the enzyme-product complex. These studies have made reference to the properties of the “initial Pi burst” in the presence of actin, as well as to a new kinetic entity: the “burst of Pi release”, and have been often vague concerning the true nature of the initial Pi burst, as well as the properties of Pi release as predicted by the current models of the actin activation of the myosin ATPase activity. The purpose of the current article is to correct this oversight, to discuss the “burst” in some detail, and to display the kinetics predicted by the current models for the actin activation of myosin. Furthermore, predictions for the kinetics of the new “burst of Pi release” are discussed in terms of its ability to discriminate between the two current competing models for actin activation of the myosin ATPase activity.  相似文献   

8.
The initial burst of Pi liberation during the hydrolysis of Mn(II)-ATP by heavy meromyosin from rabbit psoas muscle was investigated. Below 10 degrees, the initial burst of Pi liberation was inhibited by the pre-addition of ADP without any change in the steady-state activity, but it was not inhibited above 10 degrees. The burst size was about one mole per mole of heavy meromyosin. The initial burst of Pi liberation in Mg-ATP hydrolysis at 8 degrees, however, was not inhibited by the pre-addition of ADP. These results, obtained with psoas muscle heavy meromyosin, were almost the same as those obtained with heavy meromyosin from rabbit leg and back muscles (Hozumi and Tawada (1975) Biochim. Biophys. Acta 376, 1-12) and, therefore, indicate that in Mn-ATP above 10 degrees there is at the burst site a predominant myosin -product complex generated by ATP hydrolysis. Similarly, below 10 degrees there is a myosin-product complex identical with the one generated by adding ADP (and Pi) to myosin.  相似文献   

9.
The subfragment 1 from dog cardiac myosin was modified by N-cyclohexyl-N′-(2-(4-morpholinyl) ethyl) carbodiimide methyl p-toluenesulfonate in the presence of the nucleophile nitrotyrosine ethyl ester. At pH 5.9, the inactivation of ATPase activity was very rapid and followed first-order kinetics. K+ (EDTA) - and Ca++-ATPase activities decreased at the same rate, and the initial phosphate burst was lost. Inactivation and incorporation of the nucleophile occurred simultaneously. Complete inactivation was accompanied by the incorporation of 1 mol of (14C) nitrotyrosine per mol of myosin subfragment 1. Inactivation and incorporation of the label were essentially equal, either with the native subfragment 1, or with the subfragment 1 in which the reactive thiols were protected by cyanylation prior to modification. No protection by nucleotides was observed. These data suggest that one carboxyl group is essential for the active conformation of cardiac myosin. This finding is in general agreement with that previously obtained with skeletal subfragment 1 (Lacombe et al. (1981) Biochemistry 20, 3648–3653) except that inactivation of cardiac subfragment 1 was not prevented by nucleotides.  相似文献   

10.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Myosin was purified from rabbit alveolar macrophages in a form that could not be activated by actin. This myosin could be phosphorylated by an endogenous myosin light chain kinase, up to 2 mol of phosphate being incorporated/mol of myosin. The site phosphorylated was located on the 20,000-dalton myosin light chain. Phosphorylation of macrophage myosin was found to be necessary for actin activation of myosin ATPase activity. Moreover, the actin-activated ATPase activity was found to vary directly with the extent of myosin phosphorylation, maximal phosphorylation (2 mol of Pi/mol of myosin) resulting in an actin-activated MgATPase activity of approximately 200 nmol of Pi/mg of myosin/min at 37 degrees C. These results establish that phosphyoyration of the 20,000-dalton light chain of myosin is sufficient to regulate the actin-activated ATPase activity of macrophage myosin.  相似文献   

12.
The effects of temperature on Mg-ITPase activity of heavy meromyosin and myosin subfragment 1 were measured in 0.1 M KC1. The initial burst of Pi liberation was one mol per mol of heavy meromyosin or two mol of myosin subfragment 1, i.e. one mol per two mol of myosin active sites, at 20 degrees C. However, it was almost zero mol below 8degrees C. Effects of KC1 concentration and pH on ITPase activity of heavy meromyosin at 20 degrees C were different from those below 8 degrees C, suggesting that the rate-limiting step in the Mg-ITP hydrolysis of myosin depends on temperature. The effect of temperature on the actin activation of heavy meromyosin Mg-ITPase was analyzed by measuring the temperature dependence of double-reciprocal plots of ITPase activity against actin concentration. The extent of actin activation was larger at low temperture. The results presented in this paper might be explained by assuming the existence of two kinds of active sites on a myosin molecule.  相似文献   

13.
31P-NMR was used to characterise intracellular phosphate pools and their post mortem changes at 7 degrees C in intact red and white cod muscles under anaerobic conditions. A total phosphate content of 55 and 60 mM was observed in red and white muscle, respectively. The concentration of P-creatine was 14 mM in the white and 9 mM in the red muscle, while that of inorganic phosphate, Pi (30 mM), ATP (9 mM), and sugar phosphate (5 mM) were similar in both muscles. During the first 90 min after death, the decrease in P-creatine showed a first order breakdown with a concomitant stoichiometric increase in Pi content, whereas the ATP and sugar phosphate remained the same. The intracellular pH decreased from 7.4 to 7.3 in this period. The steady-state rate constant of myosin ATPase was 0.0054 and 0.0022/min for red and white muscles, respectively. Individuals kept under diminished oxygen tension prior to being killed, showed a reduced P-creatine level in both muscles.  相似文献   

14.
Inorganic phosphate (Pi) decreases maximal tension in contracted skeletal and heart muscle fibers. We investigated the effects of 10 mM Pi on the force-calcium relationship in Triton X-100-skinned Taenia coli smooth muscle fibers. Isometric force measurements show that the calcium sensitivity of the force depends on the phosphate concentration. Furthermore 10 mM Pi relaxes the fibers more at intermediate than at high calcium ion concentrations: At pCa 4.5 tension decreases in the presence of 10 mM Pi by approximately 12% but it decreases 70% at pCa 6.17. Removal of phosphate partially reverses the relaxation. Simultaneous determination of actomyosin ATPase activity and force (Güth, K., and J. Junge, 1982, Nature (Lond.), 300:775-776) shows that the ATPase activity does not correlate with the changes in force. In the presence of Pi, tension decreases more than the ATPase activity. The level of phosphorylation of the 20,000-D regulatory myosin light chain is not changed in the presence or absence of 10 mM Pi. The results are discussed in terms of slowly or noncycling myosin crossbridges formed at lower calcium concentrations, which contribute to the force development but not to the ATPase activity. These crossbridges are considered to be dissociated in the presence of phosphate.  相似文献   

15.
Actomyosin was extracted from smooth muscle of molluscan abalone with 0.1 M PPit pH 6.4. Myosin was separated from the actomyosin by centrifugation at 100,000 X g in the presence of 5 mM ATP and 10 mM MgCl2. Myosin in the supernatant was further purified by gel filtration on a Sepharose 4B column. Paramyosin contamination of the actomyosin preparation interfered with the isolation of myosin and complete removal of actin and paramyosin from the myosin has not been accomplished. The myosin appeared to consist of a single f-chain and a single g-chain, as examined by SDS-disc electrophoresis in 8 or 13.7% acrylamide gel. The ATPase [EC 3.6.1.3] activity of this myosin in 0.5 M KCL at neutral pH and at 0 degrees was rather unstable and decreased by 10-20% per day. The effects of rho-chloromercuribenzoate and EDTA on the ATPase activity were similar to those observed with other smooth muscle myosin but the dependence upon pH or KCL concentration was different.  相似文献   

16.
Shortening and ATPase rates were measured in Ca2+-activated myofibrils from frog fast muscles in unloaded conditions at 4 degrees C. ATPase rates were determined using the phosphate-binding protein method (free phosphate) and quench flow (total phosphate). Shortening rates at near zero load (V0) were estimated by quenching reaction mixtures 50 ms to 10 s old at pH 3.5 and measuring sarcomere lengths under the optical microscope. As with the rabbit psoas myofibrils (C. Lionne, F. Travers, and T. Barman, 1996, Biophys. J. 70:887-895), the ATPase progress curves had three phases: a transient Pi burst, a fast linear phase (kF), and a deceleration to a slow phase (kS). Evidence is given that kF is the ATPase rate of shortening myofibrils. V0 is in good agreement with mechanical measurements in myofibrils and fibers. Under the same conditions and at saturation in ATP, V0 and kF are 2.4 microm half-sarcomere(-1) s(-1) and 4.6 s(-1), and their Km values are 33 and 200 microM, respectively. These parameters are higher than found with rabbit psoas myofibrils. The myofibrillar kF is higher than the fiber ATPase rates obtained previously in frog fast muscles but considerably lower than obtained in skinned fibers by the phosphate-binding protein method (Z. H. He, R. K. Chillingworth, M. Brune, J. E. T. Corrie, D. R. Trentham, M. R. Webb, and M. R. Ferenczi, 1997, J. Physiol. 50:125-148). We show that, with frog as with rabbit myofibrillar ATPase, phosphate release is the rate-limiting step.  相似文献   

17.
The effects of 2,3-butanedione 2-monoxime (BDM) on mechanical responses of glycerinated fibers and the ATPase activity of heavy meromyosin (HMM) and myofibrils have been studied using rabbit skeletal muscle. The mechanical responses and the ATPase activity were measured in similar conditions (ionic strength 0.06-0.2 M, 0.4-4 mM MgATP, 0-20 mM BDM, 2-20 degrees C and pH 7.0). BDM reversibly reduced the isometric tension, shortening speed, and instantaneous stiffness of the fibers. BDM also inhibited myofibrillar and HMM ATPase activities. The inhibitory effect on the relative ATPase activity of HMM was not influenced by the addition of actin or troponin-tropomyosin-actin. High temperature and low ionic strength weakened BDM's suppression of contraction of the fibers and the ATPase activity of contracting myofibrils, but not of the HMM, acto-HMM and relaxed myofibrillar ATPase activity. The size of the initial phosphate burst at 20 degrees C was independent of the concentration of BDM. These results suggest that the suppression of contraction of muscle fibers is due mainly to direct action of BDM on the myosin molecules.  相似文献   

18.
The effects of D2O on the elementary steps in the contractile and transport ATPase [EC 3.6.1.3] reactions were studied, and the following results were obtained: 1. The rate of H-meromyosin ATPase in the steady state decreased in D2O to 60% of that in H2O. Deuterium oxide did not affect the size or rate of the initial burst of Pi liberation, i.e. the amount or rate of formation of the reactive myosin-phosphate-ADP complex, MADPP. Moreover, neither the rate of change in the fluorescence spectrum of H-meromyosin induced by ATP (the rate of formation of the second enzyme-ATP complex, M2ATP) nor the rate constant of decomposition of MADPP into M degrees + ADP + Pi was affected by D2O. However, the equilibrium constant of the step M2ATP in equilibrium MADPP decreased in D2O to about 1/2 the value in H2O. 2. In the case of the Na+-K+-dependent ATPase reactin, neither the rate constant of formation of the second enzyme-ATP complex, E2ATP, nor that of decomposition of a phosphorylated intermediate, EADP approximately P, was affected by D2O. However, the equilibrium constant of the step E2ATP in equilibrium EADP approximately P decreased in D2O to about 1/2.5-1/4 of the value in H2O. These results suggest a similarity between the modes of binding of phosphate in MADPP in the myosin ATPase reaction and in EADP approximatley P in the Na+-K+-dependent ATPase reaction.  相似文献   

19.
Millisecond mixing and quenching experiments demonstrate an apparent t1/2 for the labeling of phosphorylated sarcoplasmic reticulum ATPase by 32Pi at pH 6 and 30 degrees C of 30 to 40 ms. Under the same conditions, the rate of exchange of water oxygens with inorganic phosphate (Pi) is about 40 mol of H2O exchanged with Pi per 10(6) g of protein per s. Theoretical equations are developed for the expected 32P-labeling pattern given various comparative rates of flux between Pi and the Michaelis complex and between the Michaelis complex and phosphorylated enzyme. The results show that the rapid reversal of the formation of the phosphorylated enzyme is a major source of the oxygen exchange and are consistent with such reversal being the only source.  相似文献   

20.
1. The myosin content of myofibrils was found to be 51% by SDS-gel electrophoresis. 2. The initial burst of Pi liberation of the ATPase [EC 3.6.1.3] of a solution of myofibrils in 1 M KCl was measured in 0.5 M KCl, and found to be 0.93 mole/mole of myosin. 3. The amount of ADP bound to myofibrils during the ATPase reaction and the ATPase activity were measured by coupling the myofibrillar ATPase reaction with sufficient amounts of pyruvate kinase [EC 2.7.1.40] and PEP to regenerate ATP. The maximum amount of ADP bound to myofibrils in 0.05M KCl and in the relaxed state was about 1.5 mole/mole of myosin. On the other hand, the ATPase activity exhibited substrate inhibition, and the amount of ATP required for a constant level of ATPase activity was smaller than that required for the maximum binding of ADP to myofibrils. 4. The maximum amount of ADP bound to myofibrils in 0.5 M KCl was about 1.9 mole/mole of myosin. When about one mole of ADP was found to 1 mole of myosin in myofibrils, the myofibrillar ATPase activity reached the saturated level, and with further increase in the concentration of ATP one more mole of ADP was found per mole of myosin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号