首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

2.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

3.
K A Gray  E Davidson  F Daldal 《Biochemistry》1992,31(47):11864-11873
Site-directed mutagenesis was used to investigate which of the highly conserved methionine residues (M183 and M205) provides the sixth axial ligand to the heme Fe in the cyt c1 subunit of the bc1 complex from the bacterium Rhodobacter capsulatus. These residues were changed to leucine (cM183L) and valine (cM205V). Two additional mutants were constructed, 1 in which a stop codon was inserted at M205 (cM205*) and the second in which 127 amino acids were deleted between the signal sequence and the putative C-terminal transmembrane alpha-helix (c delta SfuI). Only cM205V grew photosynthetically, and membranes isolated from this strain catalyzed quinol-dependent reduction of cyt c in amounts similar to that in a wild-type strain. Even though cM183L could not grow photosynthetically, it contained all the appropriate polypeptides and cofactors of the bc1 complex, as shown by SDS-PAGE and optical difference spectroscopy of intact membrane particles. Neither of the two deletion mutants contained a stable complex. Flash absorption spectroscopy using chromatophores showed no cytochrome c rereduction after oxidation by the reaction center in cM183L. The bc1 complex from each strain was isolated and characterized. Oxidation reduction midpoint potential titrations revealed that cyt c1 from cM183L had a dramatically shifted Em value (delta Em = -390 mV) compared with wild type and cM205V. While the optical absorption spectrum of cyt c1 from cM183L suggested that the c-type heme was low-spin, nonetheless it was able to react with the exogenous ligand carbon monoxide. The overall data support that M183, and not M205, is the sixth ligand to the heme Fe of cyt c1 of the bc1 complex.  相似文献   

4.
Iwaki M  Osyczka A  Moser CC  Dutton PL  Rich PR 《Biochemistry》2004,43(29):9477-9486
Redox transitions in the Rhodobacter capsulatus cytochrome bc(1) complex were investigated by perfusion-induced attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy combined with synchronous visible spectroscopy, in both the wild type and a cytochrome c(1) point mutant, M183K, in which the midpoint potential of heme was lowered from the wild-type value of 320 mV to 60 mV. Overall redox difference spectra of the wild type and M183K mutant were essentially identical, indicating that the mutation did not cause any major structural perturbation. Spectra were compared with data on the bovine bc(1) complex, and tentative assignments of several bands could be made by comparison with available data on model compounds and crystallographic structures. The bacterial spectra showed contributions from ubiquinone that were much larger than in the bovine enzyme, arising from additional bound and adventitious ubiquinone. The M183K mutant enabled selective reduction of the iron-sulfur protein which in turn allowed the IR redox difference spectra of ISP and cytochrome c(1) to be deconvoluted at high signal/noise ratios, and features of these spectra are interpreted in light of structural and mechanistic information.  相似文献   

5.
The fbcB and fbcC genes encoding cytochromes b and c1 of the bc1 complex were extended with a segment to encode a polyhistidine tag linked to their C-terminal sequence allowing a one-step affinity purification of the complex. Constructions were made in vitro in a pUC-derived background using PCR amplification. The modified fbc operons were transferred to a pRK derivative plasmid, and this was used to transform the fbc- strain of Rhodobacter sphaeroides, BC17. The transformants showed normal rates of growth. Chromatophores prepared from these cells showed kinetics of turnover of the bc1 complex on flash activation which were essentially the same as those from wild-type strains, and analysis of the cytochrome complement and spectral and thermodynamic properties by redox potentiometry showed no marked difference from the wild type. Chromatophores were solubilized and mixed with Ni-NTA-Sepharose resin. A modification of the standard elution protocol in which histidine replaced imidazole increased the activity 20-fold. Imidazole modified the redox properties of heme c1, suggesting ligand displacement and inactivation when this reagent is used at high concentration. The purified enzyme contained all four subunits in an active dimeric complex. This construction provides a facile method for preparation of wild-type or mutant bc1 complex, for spectroscopy and structural studies.  相似文献   

6.
The results of a comprehensive Q-band resonance Raman investigation of cytochrome c1 and cytochrome f subunits of bc1 and b6f complexes are presented. Q-band excitation provides a particularly effective probe of the local heme environments of these species. The effects of protein conformation (particularly axial ligation) on heme structure and function were further investigated by comparison of spectra obtained from native subunits to those of a site directed c1 mutant (M183L) and various pH-dependent species of horse heart cytochrome c. In general, all species examined displayed variability in their axial amino acid ligation that suggests a good deal of flexibility in their hemepocket conformations. Surprisingly, the large scale protein rearrangements that accompany axial ligand replacement have little or no effect on macrocycle geometry in these species. This indicates the identity and/or conformation of the peptide linkage between the two cysteines that are covalently linked to the heme periphery may determine heme geometry.  相似文献   

7.
To study the essentiality of head domain movement of the Rieske iron-sulfur protein (ISP) during bc(1) catalysis, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with three pairs of cysteines engineered (one cysteine each) on the interface between cytochrome b and ISP, A185C(cytb)/K70C(ISP), I326C(cytb)/G165C(ISP), and T386C(cytb)/K164C(ISP), were generated and characterized. Formation of an intersubunit disulfide bond between cytochrome b and ISP is detected in membrane (intracytoplasmic membrane and air-aged chromatophore), and purified bc(1) complex was prepared from the A185C(cytb)/K70C(ISP) mutant cells. Formation of the intersubunit disulfide bond in this cysteine pair mutant complex is concurrent with the loss of its bc(1) activity. Reduction of this disulfide bond by beta-mercaptoethanol restores activity, indicating that mobility of the head domain of ISP is functionally important in the cytochrome bc(1) complex. The rate of intramolecular electron transfer, between 2Fe2S and heme c(1), in the A185C(cytb)/K70C(ISP) mutant complex is much lower than that in the wild type or in their respective single cysteine mutant complexes, indicating that formation of an intersubunit disulfide bond between cytochrome b and ISP arrests the head domain of ISP in the "fixed state" position, which is too far for electron transfer to heme c(1).  相似文献   

8.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

9.
Elberry M  Yu L  Yu CA 《Biochemistry》2006,45(15):4991-4997
Cytochrome c(1) of Rhodobacter sphaeroides ubiquinol-cytochrome c oxidoreductase contains several insertions and deletions that distinguish it from the complex of other higher organisms. Additionally, this bacterial cytochrome c(1) contains two nonconserved cysteines, C145 and C169, with the latter included in the second long insertion located upstream of the sixth heme ligand, M185. The orientation of the insertions and the state of these non-heme binding cysteines remain unknown. Mutating one or both cysteines is found to have comparable effects on the functionality of the cytochrome bc(1) complex. Mutants show an electron transfer activity decreased to a rate that is still high enough to support delayed photosynthetic growth. The mutated cytochrome c(1) has a decreased E(m) without any alteration in the heme ligation environment since none of the mutants binds carbon monoxide. The low E(m) is believed to be caused by a structural modification in the head domain of cytochrome c(1). Analysis of the mutants reveals that the two cysteines form a disulfide bridge. Cleavage of cytochrome c(1) between the two cysteines followed by gel electrophoresis shows two fragments only under reducing conditions, confirming the existence of a disulfide bridge. The disulfide bridge is essential in maintaining the structural integrity of cytochrome c(1) and thus the functionality of the cytochrome bc(1) complex.  相似文献   

10.
The fungal extracellular flavocytochrome cellobiose dehydrogenase (CDH) participates in lignocellulose degradation. The enzyme has a cytochrome domain connected to a flavin-binding domain by a peptide linker. The cytochrome domain contains a 6-coordinate low spin b-type heme with unusual iron ligands and coordination geometry. Wild type CDH is only the second example of a b-type heme with Met-His ligation, and it is the first example of a Met-His ligation of heme b where the ligands are arranged in a nearly perpendicular orientation. To investigate the ligation further, Met65 was replaced with a histidine to create a bis-histidyl ligated iron typical of b-type cytochromes. The variant is expressed as a stable 90-kDa protein that retains the flavin domain catalytic reactivity. However, the ability of the mutant to reduce external one-electron acceptors such as cytochrome c is impaired. Electrochemical measurements demonstrate a decrease in the redox midpoint potential of the heme by 210 mV. In contrast to the wild type enzyme, the ferric state of the protoheme displays a mixed low spin/high spin state at room temperature and low spin character at 90 K, as determined by resonance Raman spectroscopy. The wild type cytochrome does not bind CO, but the ferrous state of the variant forms a CO complex, although the association rate is very low. The crystal structure of the M65H cytochrome domain has been determined at 1.9 A resolution. The variant structure confirms a bis-histidyl ligation but reveals unusual features. As for the wild type enzyme, the ligands have a nearly perpendicular arrangement. Furthermore, the iron is bound by imidazole N delta 1 and N epsilon 2 nitrogen atoms, rather than the typical N epsilon 2/N epsilon 2 coordination encountered in bis-histidyl ligated heme proteins. To our knowledge, this is the first example of a bis-histidyl N delta 1/N epsilon 2-coordinated protoporphyrin IX iron.  相似文献   

11.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   

12.
The nature of the axial ligands of a heme group is an important factor in maintaining the oxidation-reduction potential of a c-type cytochrome. Cytochrome c3 from Desulfovibrio vulgaris Hildenborough contains four bis-histidinyl coordinated hemes with low oxidation-reduction potentials. Site-directed mutagenesis was used to generate a mutant in which histidine 70, the sixth axial ligand of heme 4, has been replaced by a methionine. The mutant protein was expressed in Desulfovibrio desulfuricans G200 at a level similar to the wild type cytochrome. A model for the three-dimensional structure of D. vulgaris Hildenborough cytochrome c3 was generated on the basis of the crystal structure of D. vulgaris Miyazaki cytochrome c3 in order to investigate the effects of the H70M mutation. The model, together with NMR data, suggested that methionine 70 has effectively replaced histidine 70 as the sixth axial ligand of heme 4 without significant alteration of the structure. A large increase of at least 200 mV of one of the four oxidation-reduction potentials was observed by electrochemistry and is interpreted in terms of structure/potential relationships.  相似文献   

13.
The interaction domain for cytochrome c on the cytochrome bc(1) complex was studied using a series of Rhodobacter sphaeroides cytochrome bc(1) mutants in which acidic residues on the surface of cytochrome c(1) were substituted with neutral or basic residues. Intracomplex electron transfer was studied using a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine 72 (Ru-72-Cc). Flash photolysis of a 1:1 complex between Ru-72-Cc and cytochrome bc(1) at low ionic strength resulted in electron transfer from photoreduced heme c to cytochrome c(1) with a rate constant of k(et) = 6 x 10(4) s(-1). Compared with the wild-type enzyme, the mutants substituted at Glu-74, Glu-101, Asp-102, Glu-104, Asp-109, Glu-162, Glu-163, and Glu-168 have significantly lower k(et) values as well as significantly higher equilibrium dissociation constants and steady-state K(m) values. Mutations at acidic residues 56, 79, 82, 83, 97, 98, 213, 214, 217, 220, and 223 have no significant effect on either rapid kinetics or steady-state kinetics. These studies indicate that acidic residues on opposite sides of the heme crevice of cytochrome c(1) are involved in binding positively charged cytochrome c. These acidic residues on the intramembrane surface of cytochrome c(1) direct the diffusion and binding of cytochrome c from the intramembrane space.  相似文献   

14.
Cytochromes cd(1) are dimeric bacterial nitrite reductases, which contain two hemes per monomer. On reduction of both hemes, the distal ligand of heme d(1) dissociates, creating a vacant coordination site accessible to substrate. Heme c, which transfers electrons from donor proteins into the active site, has histidine/methionine ligands except in the oxidized enzyme from Paracoccus pantotrophus where both ligands are histidine. During reduction of this enzyme, Tyr(25) dissociates from the distal side of heme d(1), and one heme c ligand is replaced by methionine. Activity is associated with histidine/methionine coordination at heme c, and it is believed that P. pantotrophus cytochrome cd(1) is unreactive toward substrate without reductive activation. However, we report here that the oxidized enzyme will react with nitrite to yield a novel species in which heme d(1) is EPR-silent. Magnetic circular dichroism studies indicate that heme d(1) is low-spin Fe(III) but EPR-silent as a result of spin coupling to a radical species formed during the reaction with nitrite. This reaction drives the switch to histidine/methionine ligation at Fe(III) heme c. Thus the enzyme is activated by exposure to its physiological substrate without the necessity of passing through the reduced state. This reactivity toward nitrite is also observed for oxidized cytochrome cd(1) from Pseudomonas stutzeri suggesting a more general involvement of the EPR-silent Fe(III) heme d(1) species in nitrite reduction.  相似文献   

15.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

16.
We have investigated in detail the effects of dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, DBMIB) on the ubiquinol-cytochrome c reductase (cytochrome bc1 complex) from bovine heart mitochondria. The inhibitory action of DBMIB on the steady-state activity of the bc1 complex is related to the specific binding of the quinone to the purified enzymatic complex. At concentrations higher than 10 mol per mol of the enzyme, DBMIB is able to stimulate an antimycin-insensitive reduction of cytochrome c catalyzed by the bc1 complex. In accordance with kinetic data showing a competition by endogenous ubiquinone in the inhibitory action, DBMIB can be considered as a product-like inhibitor of the ubiquinol-cytochrome c reductase activity. The site of specific binding of dibromothymoquinone in the bc1 complex enables it to interact with the iron-sulphur center of the enzyme, as indicated by changes induced in the EPR spectrum of the center. However, the inhibitor also directly interacts with cytochrome b, promoting a fast chemical oxidation of the reduced heme center. In spite of these effects, DBMIB has been found not to exert significant effects on the first turnover of the fully oxidized bc1 complex, as monitored by the rapid reduction of both cytochromes b and c1 by ubiquinol-1. In the presence of antimycin, only a stimulation of cytochrome c1 reduction, in parallel to an enhanced cytochrome b reoxidation, is observed. Moreover, DBMIB does not affect the oxidant-induced extra cytochrome b reduction in the presence of antimycin. On the basis of the evidences suggesting a competition with the endogenous ubiquinone in the redox cycle of the bc1 complex, a model is proposed for the mechanism of DBMIB inhibition. Such model can also explain at the molecular level the redox bypass induced by dibromothymoquinone in the whole respiratory chain (Degli Esposti, M., Rugolo, M. and Lenaz, G. (1983) FEBS Lett. 156, 15-19).  相似文献   

17.
Resonance Raman spectroscopy and step-scan Fourier transform infrared (FTIR) spectroscopy have been used to identify the ligation state of ferrous heme iron for the H93G proximal cavity mutant of myoglobin in the absence of exogenous ligand on the proximal side. Preparation of the H93G mutant of myoglobin has been previously reported for a variety of axial ligands to the heme iron (e.g., substituted pyridines and imidazoles) [DePillis, G., Decatur, S. M., Barrick, D., and Boxer, S. G. (1994) J. Am. Chem. Soc. 116, 6981-6982]. The present study examines the ligation states of heme in preparations of the H93G myoglobin with no exogenous ligand. In the deoxy form of H93G, resonance Raman spectroscopic evidence shows water to be the axial (fifth) ligand to the deoxy heme iron. Analysis of the infrared C-O and Raman Fe-C stretching frequencies for the CO adduct indicates that it is six-coordinate with a histidine trans ligand. Following photolysis of CO, a time-dependent change in ligation is evident in both step-scan FTIR and saturation resonance Raman spectra, leading to the conclusion that a conformationally driven ligand switch exists in the H93G protein. In the absence of exogenous nitrogenous ligands, the CO trans effect stabilizes endogenous histidine ligation, while conformational strain favors the dissociation of histidine following photolysis of CO. The replacement of histidine by water in the five-coordinate complex is estimated to occur in < 5 micros. The results demonstrate that the H93G myoglobin cavity mutant has potential utility as a model system for studying the conformational energetics of ligand switching in heme proteins such as those observed in nitrite reductase, guanylyl cyclase, and possibly cytochrome c oxidase.  相似文献   

18.
Fast folding of cytochrome c.   总被引:5,自引:5,他引:0       下载免费PDF全文
Native iso-2 cytochrome c contains two residues (His 18, Met 80) coordinated to the covalently attached heme. On unfolding of iso-2, the His 18 ligand remains coordinated to the heme iron, whereas Met 80 is displaced by a non-native heme ligand, His 33 or His 39. To test whether non-native His-heme ligation slows folding, we have constructed a double mutant protein in which the non-native ligands are replaced by asparagine and lysine, respectively (H33N,H39K iso-2). The double mutant protein, which cannot form non-native histidine-heme coordinate bonds, folds significantly faster than normal iso-2 cytochrome c: gamma = 14-26 ms for H33N,H39K iso-2 versus gamma = 200-1,100 ms for iso-2. These results with iso-2 cytochrome c strongly support the hypothesis that non-native His-heme ligation results in a kinetic barrier to fast folding of cytochrome c. Assuming that the maximum rate of a conformational search is about 10(11) s-1, the results imply that the direct folding pathway of iso-2 involves passage through on the order of 10(9) or fewer partially folded conformers.  相似文献   

19.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1987,26(14):4501-4504
The interaction of the Rhodobacter sphaeroides cytochrome bc1 complex with Rb. sphaeroides cytochrome c2 and horse cytochrome c was studied by using specific lysine modification and ionic strength dependence methods. The rate of the reactions with both cytochrome c and cytochrome c2 decreased rapidly with increasing ionic strength above 0.2 M NaCl. The ionic strength dependence suggested that electrostatic interactions were equally important to the reactions of the two cytochromes, even though they have opposite net charges at pH 7.0. In order to define the interaction domain on horse cytochrome c, the reaction rates of derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This result indicates that lysines surrounding the heme crevice of horse cytochrome c are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. In order to define the reaction domain on cytochrome c2, a fraction consisting of a mixture of singly labeled 4-carboxy-2,6-dinitrophenylcytochrome c2 derivatives modified at lysine-35, -88, -95, -97, and -105 and several unidentified lysines was prepared. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The rate of reaction of this fraction was significantly smaller than that of native cytochrome c2, suggesting that the binding domain on cytochrome c2 is also located at the heme crevice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The changes in the free energy of the denatured state of a set of yeast iso-1-cytochrome c variants with single surface histidine residues have been measured in 3 M guanidine hydrochloride. The thermodynamics of unfolding by guanidine hydrochloride is also reported. All variants have decreased stability relative to the wild-type protein. The free energy of the denatured state was determined in 3 M guanidine hydrochloride by evaluating the strength of heme-histidine ligation through determination of the pK(a) for loss of histidine binding to the heme. The data are corrected for the presence of the N-terminal amino group which also ligates to the heme under similar solution conditions. Significant deviations from random coil behavior are observed. Relative to a variant with a single histidine at position 26, residual structure of the order of -1.0 to -2.5 kcal/mol is seen for the other variants studied. The data explain the slower folding of yeast iso-1-cytochrome c relative to the horse protein. The greater number of histidines and the greater strength of ligation are expected to slow conversion of the histidine-misligated forms to the obligatory aquo-heme intermediate during the ligand exchange phase of folding. The particularly strong association of histidine residues at positions 54 and 89 may indicate regions of the protein with strong energetic propensities to collapse against the heme during early folding events, consistent with available data in the literature on early folding events for cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号