首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.

Background

Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such phenotype is seen in the C57BL/6 (B6) murine background.

Methodology/Principal Findings

We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB) and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with inflammatory responses in the absence of PECAM.

Conclusions/Significance

These data potentiate further study of the diapedesis machinery, as well as potential identification of new components of this machinery. As such, this study is an important step to better understanding the processes of inflammation.  相似文献   

2.
Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.  相似文献   

3.
4.
We compared the behavior of 14 inbred mouse strains and an F1 hybrid commonly used in transgenic and knockout production. These strains were 129P3/J, 129S1/SvImJ, 129S6/SvEvTac, 129T2/SvEmsJ, 129X1/SvJ (formerly 129/J, 129/Sv-p+Tyr+Kitl+/J, 129/SvEvTac, 129SvEmsJ, and 129/SvJ, respectively), A/JCrTac, BALB/cAnNTac, C3H/HeNTac, C57BL/6J, C57BL/6NTac, DBA/2NTac, FVB/NTac, NOD/MrkTac, SJL/JCrNTac, and the hybrid B6129S6F1Tac. Performance in three behavioral tests (rotorod, open-field activity-habituation, and contextual and cued fear conditioning) was determined. On the rotorod assay, SJL/JCrNTac mice had the shortest latencies to fall on the first day of testing, and DBA/2NTac mice showed impaired motor learning. Open-field behavior was analyzed using the parameters total distance, center distance, velocity, and vertical activity. 129T2/EvEmsJ and A/JCrTac were least active in the open field, whereas NOD/MrkTac mice were most active. Contrary to earlier studies, we found that all strains habituated to the open field in at least one of these parameters. In contextual and cued fear conditioning, all strains displayed activity suppression. However, FVB/NTac mice reacted less strongly to both context and cue than did most of the other strains. There were no significant behavioral differences between C57BL/6J and C57BL/6NTac, except for higher open-field activity in C57BL/6J female mice. These findings illustrate the importance of the appropriate selection of background strain for transgenic, gene targeting, or drug research.  相似文献   

5.
Background strain is known to influence the way a genetic manipulation affects mouse phenotypes. Despite data that demonstrate variations in the primary phenotype of basic inbred strains of mice, there is limited data available about specific metabolic fluxes in vivo that may be responsible for the differences in strain phenotypes. In this study, a simple stable isotope tracer/NMR spectroscopic protocol has been used to compare metabolic fluxes in ICR, FVB/N (FVB), C57BL/6J (B6), and 129S1/SvImJ (129) mouse strains. After a short-term fast in these mice, there were no detectable differences in the pathway fluxes that contribute to glucose synthesis. However, after a 24-h fast, B6 mice retain some residual glycogenolysis compared with other strains. FVB mice also had a 30% higher in vivo phosphoenolpyruvate carboxykinase flux and total glucose production from the level of the TCA cycle compared with B6 and 129 strains, while total body glucose production in the 129 strain was approximately 30% lower than in either FVB or B6 mice. These data indicate that there are inherent differences in several pathways involving glucose metabolism of inbred strains of mice that may contribute to a phenotype after genetic manipulation in these animals. The techniques used here are amenable to use as a secondary or tertiary tool for studying mouse models with disruptions of intermediary metabolism.  相似文献   

6.
Uniform genetic background of inbred mouse strains is essential in experiments with genetically modified mice. In order to assess Add2 (beta-adducin) function, its null mutation was produced in embryonic stem cells derived from 129Sv mouse and the subsequently obtained mouse mutants were backcrossed for 6 generations with C57BL/6JOlaHsd strain. Comparison of brain proteins between mutated and control animals by two-dimensional gels linked to mass spectroscopy analysis showed expression of Snca (alpha-synuclein) in the mutated animals, but unexpectedly not in the control C57BL/6JOlaHsd mice. Comparison between C57BL/6JOlaHsd and C57BL/6NCrl mice confirmed the presence of a deletion encompassing Snca and in addition Mmrn1 (multimerin1) loci in C57BL/6JOlaHsd strain. The segregation of mutated Add2 together with an adjacent part of the chromosome 6 derived from 129Sv mice, rescued the loss of these two genes in knockout mice on C57BL/6JOlaHsd background. The fact that Add2 knockout was compared with the C57BL/6JOlaHsd mouse strain, which is actually a double knockout of Snca and Mmrn1 emphasizes a need for information provided by commercial suppliers and of exact denominations of substrains used in research.  相似文献   

7.
Five strains of mice commonly used in transgenic and knockout production were compared with regard to genetic background and behavior. These strains were: C57BL/6J, C57BL/6NTac, 129P3/J (formerly 129/J), 129S6/SvEvTac (formerly 129/SvEvTac) and FVB/NTac. Genotypes for 342 microsatellite markers and performance in three behavioral tests (rotorod, open field activity and habituation, and contextual and cued fear conditioning) were determined. C57BL/6J and C57BL/6NTac were found to be true substrains; there were only 12 microsatellite differences between them. Given the data on the genetic background, one might predict that the two C57BL/6 substrains should be very similar behaviorally. Indeed, there were no significant behavioral differences between C57BL/6J and C57BL/6NTac. Contrary to literature reports on other 129 strains, 129S6/SvEvTac often performed similarly to C57BL/6 strains, except that it was less active. FVB/NTac showed impaired rotorod learning and cued fear conditioning. Therefore, both 129S6/SvEvTac and C57BL/6 are recommended as background strains for targeted mutations when researchers want to evaluate their mice in any of these three behavior tests. However, any transgene on the FVB/NTac background should be transferred to B6. Habituation to the open field was analyzed using the parameters: total distance, center distance, velocity and vertical activity. Contrary to earlier studies, we found that all strains habituated to the open field in at least two of these parameters (center distance and velocity).  相似文献   

8.
The aim of this study was to characterize the response to exercise training in several mouse strains and estimate the genetic contribution to phenotypic variation in the responses to exercise training. Male mice from three inbred strains [C57Bl/6J (BL6), FVB/NJ (FVB), and Balb/cJ (Balb/c)] and three hybrid F(1) strains [CB6F1/J (CB6 = female Balb/c x male BL6), B6F F(1) (female BL6 x male FVB), and FB6 F(1) (female FVB x male BL6)] completed an exercise performance test before and after a 4-wk treadmill running program. Distance was used as the primary estimate of endurance exercise performance. FVB mice showed the greatest response to training, with five- to sevenfold greater increases in distance run compared with BL6 and Balb/c strains. Specifically, BL6, FVB, and Balb/c strains increased distance by 33, 172, and 23%, respectively. A similar pattern of changes across strains was observed for run time (17, 87, and 11%) and work (99, 287, and 57%). As a group, F(1) hybrid mice derived from BL6 and FVB strains showed an intermediate response to training (61%). However, further analysis indicated that training responses in FB6 F(1) mice (80%) were approximately 2.5-fold greater than responses in B6F F(1) mice (33%, P = 0.08). A similar pattern of changes between FB6 and B6F F(1) mice was observed for run time (44.5 and 17%) and work (141 and 59%). These data demonstrate that there are large strain-dependent differences in training responses among inbred mouse strains, suggesting that genetic background contributes significantly to adaptation to exercise. Furthermore, the contrasting responses in B6F and FB6 F(1) strains show that a maternal component strongly influences strain-dependent differences in training responses.  相似文献   

9.
Li Q  Fang CX  Nunn JM  Zhang J  LaCour KH  Ren J 《Life sciences》2006,80(3):187-192
Mice are extensively used for gene modification research and isolated cardiomyocytes are essential for evaluation of cardiac function without interference from non-myocyte contribution. This study was designed to characterize cardiomyocyte excitation-contraction coupling in FVB/N-C57BL/6 intercrossed brown mice. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix softedge system including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)), maximal velocity of shortening and relengthening (+/- dL/dt), intracellular Ca(2+) rise and decay rate. Resting cell length was longer in age- and gender-matched C57BL/6 and brown mice compared to FVB strain. PS and +/- dL/dt were significantly lower in brown mice compared to FVB/N and C57BL/6 groups. TPS was shortened in C57BL/6 mice and TR(90) was prolonged in brown mice compared to other groups. Resting intracellular Ca(2+) level and single exponential intracellular Ca(2+) decay constant were comparable among all three mouse lines. Rise in intracellular Ca(2+) in response to electrical stimulus was higher in C57BL/6 mouse myocytes whereas bi-exponential intracellular Ca(2+) decay was faster in brown mice. Myocytes from all three groups exhibited similar fashion of reduction in PS in response to increased stimulus frequency. These data suggest that inherent differences in cardiomyocyte excitation-contraction coupling exist between strains, which may warrant caution when comparing data from these mouse lines.  相似文献   

10.
C57BL/6N inbred mice are used as the genetic background for producing knockout mice in large-scale projects worldwide; however, the genetic divergence among C57BL/6N-derived substrains has not been verified. Here, we identified novel single nucleotide polymorphisms (SNPs) specific to the C57BL/6NJ strain and selected useful SNPs for the genetic monitoring of C57BL/6N-derived substrains. Informative SNPs were selected from the public SNP database at the Wellcome Trust Sanger Institute by comparing sequence data from C57BL/6NJ and C57BL/6J mice. A total of 1,361 candidate SNPs from the SNP database could distinguish the C57BL/6NJ strain from 12 other inbred strains. We confirmed 277 C57BL/6NJ-specific SNPs including 10 nonsynonymous SNPs by direct sequencing, and selected 100 useful SNPs that cover all of the chromosomes except Y. Genotyping of 11 C57BL/6N-derived substrains at these 100 SNP loci demonstrated genetic differences among the substrains. This information will be useful for accurate genetic monitoring of mouse strains with a C57BL/6N-derived background.  相似文献   

11.
Mice from the inbred C57BL/6 strain have been commonly used for the generation and analysis of transgenic and knockout animal models. However, several C57BL/6 substrains exist, and these are genetically and phenotypically different. In addition, each of these substrains can be purchased from different animal providers and, in some cases, they have maintained their breeding stocks separated for a long time, allowing genetic differences to accumulate due to individual variability and genetic drift. With the aim of describing the differences in the genotype of several C57BL/6 substrains, we applied the Illumina® Mouse Medium Density Linkage Mapping panel, with 1,449 single nucleotide polymorphisms (SNPs), to individuals from ten C57BL/6-related strains: C57BL/6JArc, C57BL/6J from The Jackson Lab, C57BL/6J from Crl, C57BL6/JRccHsd, C57BL/6JOlaHsd, C57BL/6JBomTac, B6(Cg)-Tyr c?2j /J, C57BL/6NCrl, C57BL/6NHsd and C57BL/6NTac. Twelve SNPs were found informative to discriminate among the mouse strains considered. Mice derived from the original C57BL/6J: C57BL/6JArc, C57BL/6J from The Jackson Lab and C57BL/6J from Crl, were indistinguishable. Similarly, all C57BL/6N substrains displayed the same genotype, whereas the additional substrains showed intermediate cases with substrain-specific polymorphisms. These results will be instrumental for the correct genetic monitoring and appropriate mouse colony handling of different transgenic and knockout mice produced in distinct C57BL/6 inbred substrains.  相似文献   

12.
Psoriasis is a chronic inflammatory skin disorder, characterised by epidermal hyperplasia (acanthosis) and leukocyte infiltration of the skin. Current therapies are inadequate, highlighting the need for new therapeutic targets. The P2X7 receptor is implicated in the pathogenesis of psoriasis. This study investigated the role of P2X7 in imiquimod (IMQ)-induced psoriasis-like inflammation. Topically applied IMQ caused twofold greater ear swelling in BALB/c mice compared to C57BL/6 mice, which encode a partial loss-of-function missense mutation in the P2RX7 gene. However, there was no difference in histological skin pathology (acanthosis and leukocyte infiltration) between the two strains. IMQ treatment up-regulated P2X7 expression in skin from both mouse strains. Additionally, IMQ induced ATP release from cultured human keratinocytes, a process independent of cell death. Injection of the P2X7 antagonist Brilliant Blue G (BBG) but not A-804598 partly reduced ear swelling compared to vehicle-injected control mice. Neither antagonist altered skin pathology. Moreover, no difference in ear swelling or skin pathology was observed between C57BL/6 and P2X7 knock-out (KO) mice. Flow cytometric analysis of IMQ-treated skin from C57BL/6 and P2X7 KO mice demonstrated similar leukocyte infiltration, including neutrophils, macrophages and T cells. In conclusion, this study demonstrates that P2X7 is not essential for development of IMQ-induced psoriasis-like inflammation but does not exclude a role for this receptor in psoriasis development in humans or other mouse models of this disease.  相似文献   

13.
Scheimpflug imaging has recently been established for in vivo imaging of the anterior eye segment and quantitative determination of lens transparency in the mouse. This enables more effective investigations of cataract formation with the mouse model, including longitudinal studies. In order to enable recognition of disease-associated irregularities, we performed Scheimpflug measurements with the common laboratory inbred lines C57BL/6J, C3HeB/FeJ, FVB/NCrl, BALB/cByJ, and 129/SvJ in a period between 2 and 12 months of age. C57BL/6J mice showed lowest mean lens densities during the test period. Progressive cortical lens opacification was generally observed, with the earliest onset in C57BBL/6J, C3HeB/FeJ, and 129/SvJ, between 2 and 6 months after birth. Moreover, lenses of these inbred lines developed nuclear opacities. Calculated mean lens density significantly increased between 6 and 12 months of age in all inbred strains except 129/SvJ. Lens densities (and the corresponding standard deviations) of FVB/NCrl and 129/SvJ increased most likely because of differences in the genetic background. Albinism as confounder might be excluded since the albino Balb/cByJ mice are more similar to the C57BL/6J or C3Heb/FeJ mice. We further identified strain-specific anterior lens opacities (C57BL/6J) and cloudy corneal lesions (C57BL/6J, FVB/NCrl, and BALB/cByJ) at later stages. In conclusion, our results indicate that there are lifelong opacification processes in the mouse lens. The highest lens transparency and a dark coat color, which prevents interference from light reflections, make mice with the C57BL/6J background most suitable for cataract research by Scheimpflug imaging. We show that lens densitometry by Scheimpflug imaging in mouse eyes can resolve differences of less than 1 %, making it possible to detect differences in cataract development in different mouse strains, even if they are small.  相似文献   

14.
Transgenic mouse production via pronuclear microinjection is a complex process consisting of a number of sequential steps. Many different factors contribute to the effectiveness of each step and thus influence the overall efficiency of transgenic mouse production. The response of egg donor females to superovulation, the fertilization rate, egg survival after injection, ability of manipulated embryos to implant and develop to term, and concentration and purity of the injected DNA all contribute to transgenic production efficiency. We evaluated and compared the efficiency of transgenic mouse production using four different egg donor mouse strains: B6D2/F1 hybrids, Swiss Webster (SW) outbred, and inbred FVB/N and C57BL/6. The data included experiments involving 350 DNA transgene constructs performed by a high capacity core transgenic mouse facility. Significant influences of particular genetic backgrounds on the efficiency of different steps of the production process were found. Except for egg production, FVB/N mice consistently produced the highest efficiency of transgenic mouse production at each step of the process. B6D2/F2 hybrid eggs are also quite efficient, but lyze more frequently than FVB/N eggs after DNA microinjection. SW eggs on the other hand block at the 1-cell stage more often than eggs from the other strains. Finally, using C57BL/6 eggs the main limiting factor is that the fetuses derived from injected eggs do not develop to term as often as the other strains. Based on our studies, the procedure for transgenic mouse production can be modified for each egg donor strain in order to overcome any deficiencies, and thus to increase the overall efficiency of transgenic mouse production.  相似文献   

15.
We investigated the development of airway hyperreactivity (AHR) and inflammation in the lungs of nine genetically diverse inbred strains of mice [129/SvIm, A/J, BALB/cJ, BTBR+(T)/tf/tf, CAST/Ei, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ] after sensitization and challenge with ovalbumin (OVA). At 24, 48, and 72 h post-OVA exposure, the severity of AHR and eosinophilic inflammation of the mouse strains ranged from relatively unresponsive to responsive. The severity of the airway eosinophilia of some strains did not clearly correlate with the development of AHR. The temporal presence of T helper type 2 cytokines in lung lavage fluid also varied markedly among the strains. The levels of IL-4 and IL-13 were generally increased in the strains with the highest airway eosinophilia at 24 and 72 h postexposure, respectively; the levels of IL-5 were significantly increased in most of the strains with airway inflammation over the 72-h time period. The differences of physiological and biological responses among the inbred mouse strains after OVA sensitization and challenge support the hypothesis that genetic factors contribute, in part, to the development of allergen-induced airway disease.  相似文献   

16.
Studies of inbred mouse strains can provide us with important information about the genetic basis of learning and memory. The present experiment studies the acquisition of a leverpress escape/avoidance task in six commonly studied inbred mouse strains (C57BL/6NCrlBR, DBA/2NCrlBR, C3H/HeJ, FVB/NJ, BALB/cByJ and 129S6/SvEvTac), and one outbred strain, the CD1. Results indicated that the strains formed three discrete performance clusters. The C57BL/6NCrlBR, C3HeB/FeJ, BALB/cByJ, and CD1 strains acquired the avoidance response comparably to Sprague-Dawley rats, avoiding approximately 40% of shocks by the fourth and final training session. The 129S6/SvEvTac and FVB/NJ were extremely poor at the avoidance task throughout training. The FVB/NJ strain remained in an escape mode, while the 129S6/SvEvTac animals performed few responses of any type. Finally, the DBA/2NCrlBR strain performed exceptionally well, avoiding over 90% of the shocks by the final session. Results are discussed in terms of genetic differences in learning and how the nigrostriatal dopamine system may mediate the observed differences.  相似文献   

17.
Gene targeting in embryonic stem (ES) cells allows the production of mice with specified genetic mutations. Currently, germline-competent ES cell lines are available from only a limited number of mouse strains, and inappropriate ES cell/host blastocyst combinations often restrict the efficient production of gene-targeted mice. Here, we describe the derivation of C57BL/6J (B6) ES lines and compare the effectiveness of two host blastocyst donors, FVB/NJ (FVB) and the coisogenic strain C57BL/6-Tyr(c)-2J (c2J), for the production of germline chimeras. We found that when B6 ES cells were injected into c2J host blastocysts, a high rate of coat-color chimerism was detected, and germline transmission could be obtained with few blastocyst injections. In all but one case, highly chimeric mice transmitted to 100% of their offspring. The injection of B6 ES cells into FVB blastocysts produced some chimeric mice. However; the proportion of coat-color chimerism was low, with many more blastocyst injections required to generate chimeras capable of germline transmission. Our data support the use of the coisogenic albino host strain, c2J, for the generation of germline-competent chimeric mice when using B6 ES cells.  相似文献   

18.
Mouse readiness for gene manipulation allowed the production of mutants with breathing defects reminiscent of breathing syndromes. As C57BL/6J and FVB/N inbred strains were often used as background strains for producing mutants, we compared their breathing pattern from birth onwards. At birth, in vivo and in vitro approaches revealed robust respiratory rhythm in FVB/N, but not C57BL/6J, neonates. With aging, rhythm robustness difference persisted, and interstrain differences in tidal volume, minute ventilation, breathing regulations, and blood-gas parameters were observed. As serotonin affected maturation and function of the medullary respiratory network, we examined the serotoninergic metabolism in the medulla of C57BL/6J and FVB/N neonates and aged mice. Interstrain differences in serotoninergic metabolism were observed at both ages. We conclude that differences in serotoninergic metabolism possibly contribute to differences in breathing phenotype of FVB/N and C57BL/6J mice.  相似文献   

19.
C57BL/6 is a well-characterized mouse strain that is used extensively for immunological and neurological research. The establishment of C57BL/6 ES cell lines has facilitated the study of gene-altered mice in a pure genetic background-however, relatively few such lines exist. Using a defined media supplement, knockout serum replacement (KSR) with knockout DMEM (KSR-KDMEM), we find that we can readily establish ES cell lines from blastocysts of C57BL/6J mice. Six lines were established, all of which were karyotypically normal and could be maintained in the undifferentiated state on mouse embryonic fibroblast (MEF) feeders. One line was further tested and found to be karyotypically stable and germline competent, both prior to manipulation and after gene targeting. For this cell line, efficiencies of cell cloning and chimera generation were greater when maintained in KSR-KDMEM. Our work suggests that the use of defined serum-free media may facilitate the generation of ES cells from inbred mouse strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号