首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Many vocalizations are encoded with a diversity of acoustic information about the signal producer. Amongst this information content are social categories related to the identity of the caller that are important for determining if and how a signal receiver may interact with that individual. Here, we employed a novel playback method in common marmosets (Callithrix jacchus) to test individual recognition during bouts of antiphonal calling. These experiments utilized custom, interactive playback software that effectively engaged subjects in antiphonal calling using vocalizations produced by a single individual and presented 'probe' vocalization stimuli representing a different individual at specific points within bouts of calling. The aim here was to test whether marmosets would recognize that the probe stimulus was a phee call produced by a different individual. Data indicated that marmosets were able to detect the change in caller identity; subjects produced significantly fewer antiphonal call responses to probe than control stimuli and, in some conditions, exhibited a shorter latency to produce the vocal response. These data suggest that marmosets recognize the identity of the individual during bouts of antiphonal calling. Furthermore, these results provide a methodological foundation for implementing the probe playback procedure to examine a broader range of social categorization during vocal interactions.  相似文献   

2.
A fundamental issue in neuroscience pertains to how different cortical systems interact to generate behavior. One of the most direct ways to address this issue is to investigate how sensory information is encoded and used to produce a motor response. Antiphonal calling is a natural vocal behavior that involves individuals producing their species-specific long distance vocalization in response to hearing the same call and engages both the auditory and motor systems, as well as the cognitive neural systems involved in decision making and categorization. Here we present results from a series of behavioral experiments investigating the auditory–vocal interactions during antiphonal calling in the common marmoset (Callithrix jacchus). We manipulated sensory input by placing subjects in different social contexts and found that the auditory input had a significant effect on call timing and propensity to call. Playback experiments tested the significance of the timing of vocal production in antiphonal calling and showed that a short latency between antiphonal calls was necessary to maintain reciprocal vocal interactions. Overall, this study shows that sensory-motor interactions can be experimentally induced and manipulated in a natural primate vocal behavior. Antiphonal calling represents a promising model system to examine these issues in non-human primates at both the behavioral and neural levels.  相似文献   

3.
Marmosets, as do many other primates, live in forest environments, are group living and constantly at risk of predation. Retaining contact with one another is therefore a matter of survival. We ask here whether their contact calls (phee and twitter vocalizations) are in some way ordered acoustically by sex or age and whether the calls of older marmosets elicit different responses than those of younger marmosets. In our study, marmosets (2–14 years) were visually isolated from conspecifics and the vocal responses to each isolated caller by other marmosets in the colony were recorded. Vocal responses to phee calls largely consisted of phee calls and, less commonly, twitter calls. No differences between the responses to calls by males and females were apparent. However, we found a strong positive and significant correlation between the caller's age and the percentage of its phee calls receiving a phee response, and a significant negative correlation between the caller's age and the percentage of its phee calls receiving a twitter response. The older the marmoset, the more antiphonal calling occurred. Two‐syllable phee calls were emitted more often by older marmosets (10–14 years) than by younger ones (2–6 years). Hence, we have found age‐dependent differences in phee‐call production and a consistent change in the response received across the adult life‐span. This age‐dependent effect was independent of kinship relations. This is the first evidence that marmosets distinguish age by vocal parameters alone and make social decisions based on age. Am. J. Primatol. 71:165–170, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
We investigated how the acoustic structure of the cotton-top tamarin monkey's (Saguinus oedipus) combination long call relates to the antiphonal calling behavior of conspecifics. Combination long calls can function as contact calls and are produced by socially isolated individuals. Often conspecifics respond to these calls with their own long calls. Structurally, these calls are always composed of one or more 'chirps' followed by two or more 'whistles'. We compared the antiphonal calling responses to playbacks of complete, naturally produced long calls versus single whistles or single chirps. Subjects responded significantly more to whole calls than to either syllable-type alone. Thus, our data suggest that, in terms of the antiphonal calling behavior of socially isolated conspecifics, the whole long call is the unit of perception.  相似文献   

5.
We describe the interactive nature of vocalizations emitted by African elephant (Loxodonta africana) family groups while visiting waterholes. Despite being in close visual contact with each other, individuals called interactively within a series of overlapping or antiphonal vocal bouts that increased significantly while departing from the waterhole. After initiating departure from the waterhole, elephants in this study increased their calling rate and their production of overlapping vocal bouts. The majority of calls either overlapped or occurred within 1.5 seconds of another call as part of an antiphonal bout, rather than as isolated calls. The departure of larger herds was accompanied by a greater number of calling bouts. The increase in interactive antiphonal bouts during departure might serve to facilitate group coordination and cohesion, as well as possibly reinforce social bonds. The longer repeated bouts could also facilitate eavesdropping by distant elephants by boosting signal detection since the repetition of these longer calls may yield an increase in the signal-to-noise ratio (SNR) that reduces the noise floor for better longer distance communication.  相似文献   

6.
Vocalizations are a dominant means of communication for numerous species, including nonhuman primates. These acoustic signals are encoded with a rich array of information available to signal receivers that can be used to guide species‐typical behaviors. In this study, we examined the communicative content of common marmoset phee calls, the species‐typical long distance contact call, during antiphonal calling. This call type has a relatively stereotyped acoustic structure, consisting of a series of long tonal pulses. Analyses revealed that calls could be reliably classified based on the individual identity and social group of the caller. Our analyses did not, however, correctly classify phee calls recorded under different social contexts, although differences were evident along individual acoustic parameters. Further tests of antiphonal calling interactions showed that spontaneously produced phee calls differ from antiphonal phee calls in their peak and end frequency, which may be functionally significant. Overall, this study shows that the marmoset phee call has a rich communicative content encoded in its acoustic structure available to conspecifics during antiphonal calling exchanges. Am. J. Primatol. 72:974–980, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
The vocal behavior of threat calls was investigated in a captive group of Japanese monkeys (Macaca fuscata fuscata). The vocalizations were heard most often when they undertook winner-support during triadic agonistic interactions. The likelihood of call emission in support of the winner was affected by the attributes of the participants, and not by the types of agonistic behavior. The calls were emitted by intermediate ranking animals frequently in support of high ranking animals and in support of females. The calling behavior of winner-supporters appears to advertise the partner and distant group members of their support for reciprocation in the near future.  相似文献   

9.
Many nonhuman primates produce food-associated vocalizations upon encountering or ingesting particular food. Concerning the great apes, only food-associated vocalizations of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) have been studied in detail, providing evidence that these vocalizations can be produced flexibly in relation to a variety of factors, such as the quantity and quality of food and/or the type of audience. Only anecdotal evidence exists of eastern (Gorilla beringei) and western gorillas (Gorilla gorilla) producing food-associated vocalizations, termed singing or humming. To enable a better understanding of the context in which these calls are produced, we investigated and compared the vocal behavior of two free-ranging groups of western lowland gorillas (Gorilla g. gorilla) at Mondika, Republic of Congo. Our results show that (a) food-associated call production occurs only during feeding and not in other contexts; (b) calling is not uniformly distributed across age and sex classes; (c) calls are only produced during feeding on specific foods; and (d) normally just one individual gives calls during group feeding sessions, however, certain food types elicit simultaneous calling of two or more individuals. Our findings provide new insight into the vocal abilities of gorillas but also carry larger implications for questions concerning vocal variability among the great apes. Food-associated calls of nonhuman primates have been shown to be flexible in terms of when they are used and who they are directed at, making them interesting vocalizations from the viewpoint of language evolution. Food-associated vocalizations in great apes can offer new opportunities to investigate the phylogenetic development of vocal communication within the primate lineage and can possibly contribute novel insights into the origins of human language.  相似文献   

10.
In many species of chorusing frogs, callers can rapidly adjust their call timing with reference to neighboring callers so as to maintain call rate while minimizing acoustic interference. The rules governing the interactions, in particular, who is listening to whom are largely unknown, presumably influenced by distance between callers, caller density, and intensities of interfering calls. We report vocal interactions in a unison bout caller, the green tree frog (Hyla cinerea). Using a microphone array, we monitored bouts from a local group of six callers embedded in a larger chorus. Data were analyzed in a 21-min segment at the peak of the chorus. Callers within this group were localized and their voices were separated for analysis of spatio-temporal interactions. We show that callers in this group: (1) synchronize with one another, (2) prefer to time their calls antiphonally, almost exactly at one-third and two-thirds of the call intervals of their neighbors, (3) tolerate call collision when antiphonal calling is not possible, and (4) perform discrete phase-hopping between three preferred phases when tracking other callers. Further, call collision increases and phase-locking decreases, with increasing inter-caller spacing. We conclude that the precise phase-positioning, phase-tracking, and phase-hopping minimizes acoustic jamming while maintaining chorus synchrony.  相似文献   

11.
For many species, the presence of a significant social partner can lessen the behavioral and physiological responses to stressful stimuli. This study examined whether a single, individually specific, signature vocalization (phee call) could attenuate the physiological stress response that is induced in marmosets by housing them in short-term social isolation. Utilizing a repeated-measures design, adult marmosets (n=10) were temporarily isolated from their long-term pair mate and exposed to three conditions: signature vocalizations from the pair mate, phee calls from an unfamiliar opposite sex individual, or no auditory stimuli. Levels of urinary cortisol were monitored as a physiological indicator of the stress response. Urinary cortisol levels were also monitored, while subjects remained undisturbed in their home cages to provide baseline levels. Temporarily isolated marmosets showed significantly higher levels of urinary cortisol than undisturbed marmosets. However, the nature of the acoustic stimulus experienced during isolation led to differences in the excretion of urinary cortisol. Isolated marmosets exposed to a familiar pair mate's vocalization showed significantly lower levels of urinary cortisol than when exposed to unfamiliar marmoset vocalizations (P <0.04) or to no auditory stimuli (P <0.03). Neither the duration of pairing nor the quality of relationship in the pair (indexed by spatial proximity scores) predicted the magnitude of reduction in cortisol in the familiar vocalization condition. The results presented here provide the first evidence that a single, individually specific communication signal can decrease the magnitude of a physiological stress response in a manner analogous to the physical presence of a social partner, a process we term "vocal buffering."  相似文献   

12.
Vocal plasticity in the face of changing social context is well‐documented in passerine birds, but the degree to which changes in social environment affect the vocal structure of non‐human primates is a topic which has remained largely unexplored. We assessed whether modification of social environments, in this case the presence of marmosets in neighboring cages, influenced the vocal morphology of phee calls, which possess ‘signature’‐like features, in Wied's black tufted‐ear marmosets (Callithrix kuhlii). Individual phee calls were obtained over a period of 8 wk from 11 animals maintained in rooms with stable social environments. After this baseline phase, seven marmosets were housed for an additional 8 wk in rooms that contained cages with unfamiliar marmosets, while four marmosets maintained the same neighbors as the first phase. Calls were digitized and both frequency and temporal parameters were measured. Multivariate discriminant function analyses (DFA) generated from vocalizations collected in the first phase produced functions that accurately classified calls to the correct individual, showing that calls had significant individual distinctiveness. DFAs generated from vocalizations in the first phase of the study continued to show high classification accuracy for marmosets in a stable social environment, but DFAs from the first phase were significantly less likely to correctly classify vocalizations in marmosets that were housed next to novel conspecifics. These data show that phee calls, which have signature‐like properties in marmosets, can be modified by changes in social context. The results suggest a degree of plasticity in vocal signals that is rare among non‐human primates.  相似文献   

13.
Common marmosets produce two variants of their long call (phee call) in different situations. Intergroup calls are produced in territorial situations, and intragroup separation calls are produced by marmosets isolated from group members. Marmoset groups frequently include postpubertal, nonreproductive members; their roles in the spontaneous production of territorial vocalizations is unclear. This study analyzed the production of home cage phee calls by nonreproductive, postpubertal marmosets while they were housed in their natal groups and after pairing with an opposite-sex conspecific. Additionally, the production of the separation phee call variant was assessed in both social conditions. The results indicated that the marmosets rarely produced home cage, or territorial, phee calls while they were natally housed. In contrast, both males and females produced the territorial phee call at a much higher rate as early as 4 days after pairing. Age-matched females remaining in their natal groups throughout the study produced home cage phee calls infrequently. Most marmosets produced separation phee calls at a high rate after separation from either their natal group or a partner, suggesting that the makeup of a social group has little effect on an animal's motivation to reunite with conspecifics. These results suggest that the social environment has an important influence on the production of territorial phee calls. Am. J. Primatol. 43:135–146, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
We quantified the acoustic characteristics of the habitats of two wild populations of pygmy marmosets, in Amazonian Ecuador to evaluate their effects on vocal signal structure. We obtained measures of ambient noise, sound attenuation and reverberation through recordings and broadcasts of exemplars of two short-range vocalizations and one long-range vocalization of the marmosets. Ambient noise levels differed among habitats. The calls of pygmy marmosets had frequencies that coincided with relatively quiet regions of the ambient noise spectra of the habitats. The three vocalization types were degraded similarly in all habitats. The two short-range signals, with a pulsatile structure, were more affected by reverberation than was the long-range, less pulsatile vocalization. This degradation could be used by the marmosets to estimate the distance of the caller animals. We obtained data on context of vocalizations from six groups of pygmy marmosets, three from each population, in both the dry and rainy seasons. The use of Trills, J calls and Long calls was related to the distance between the calling animal and the potential receivers suggesting that marmosets are using the calls in a way appropriate to the effects of habitat acoustics. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

15.
Vocal interactions are common in chorusing frogs. Changes in the calling patterns of Eleutherodactylus johnstonei males were analyzed by recording their responses to playbacks of conspecific calls repeated at fixed periods (long: 1.7 s, short: 0.98 s). The call period and timing, estimated through the onset response time, were determined for each male. Males reduced and regularized the period of their calls in response to both stimuli, regardless of their absolute and relative period (i.e., the difference between the male's period and the stimulus period). Males avoided initiating their calls during ongoing stimuli, but did not time their calls in the silent gap between successive stimuli in ways that reduced the probability of overlap: the proportion of calls without overlap did not depart from random expectations when the silent gap was long, and was smaller than expected when the gap was short. This result indicated that males react to the presence of the virtual competitor but not to its particular characteristics. Fixed responses have been described in other anurans, and often relate to trade-offs between female attraction, male competition, predator attraction, and depletion of energy reserves. Lack of coordination with the stimuli, beyond inhibition of calling during an ongoing stimulus, also indicates somewhat rigid vocal strategies, at least under the experimental conditions. Results from the short period trials suggested a compromise between maintaining a call period and avoiding call overlap. Whether female behavior is influenced by call interference and whether males pay selective attention to distant males instead of to close neighbors must be investigated to better understand the vocal behavior of E. johnstonei .  相似文献   

16.
All habitats have some level of noise but anthropogenic sounds such as those produced by traffic are structurally different from natural sounds, and could cause organisms living in noisy urban areas to modify their vocal communication. We compared temporal and spectral parameters of contact calls in black tufted-ear marmosets (Callithrix penicillata) living in a noisy and a quiet area. From February 2009 to March 2012 we recorded spontaneously produced phee vocalizations by marmosets in two areas in Minas Gerais, Brazil: a noisy urban park (N = 581) in Belo Horizonte, and a quiet natural forest, on Cauaia farm in Matozinhos city (N = 560). We measured the duration, frequencies, and rate of phee vocalizations. We found that marmosets’ phee vocalizations were significantly longer in the noisy area than in the quiet area. The low, high, and dominant frequencies were significantly lower in the noisy area than in the quiet area, and contact calling was less frequent in the noisy area than in the quiet area. We suggest that the differences between marmoset contact calls from noisy and quiet areas are influenced by anthropogenic noise.  相似文献   

17.
The neuropeptide arginine vasotocin (AVT) influences vocalizations in some anuran amphibians but it is unknown whether AVT alters all vocal behaviors of a species similarly. We first characterized the vocal repertoire of male gray treefrogs (Hyla versicolor). Three different call types were distinguished by unique sets of temporal and spectral features. Second, we examined the effects of AVT on each call type by injecting frogs with either AVT (100 microg; intraperitoneal) or saline and recording subsequent behavior. In the field, AVT maintained advertisement calling, whereas calling ceased in saline-injected animals. Advertisement call rate in AVT-injected males fell significantly and dominant frequency of the call was significantly higher. In the laboratory, AVT induced advertisement calling in males that were not initially vocalizing and dominant frequency was also significantly higher in these males. AVT maintained aggressive calling similarly but the characteristics of aggressive calls were not altered by AVT. There were no significant differences in release call behavior between AVT- and saline-injected groups; however, release call duration decreased significantly in AVT-injected animals, compared with preinjection values for the same animals. The effects of AVT on vocal behavior in this species are therefore not the same for each call type. AVT may act at more general motivational levels in the central nervous system and other neural or endocrine factors may control choice of call type and direct motor output.  相似文献   

18.
Organisms that use vocal signals to communicate often modulate their vocalizations to avoid being masked by other sounds in the environment. Although some environmental noise is continuous, both biotic and abiotic noise can be intermittent, or even periodic. Interference from intermittent noise can be avoided if calls are timed to coincide with periods of silence, a capacity that is unambiguously present in insects, amphibians, birds, and humans. Surprisingly, we know virtually nothing about this fundamental capacity in nonhuman primates. Here we show that a New World monkey, the cotton-top tamarin (Saguinus oedipus), can restrict calls to periodic silent intervals in loud white noise. In addition, calls produced during these silent intervals were significantly louder than calls recorded in silent baseline sessions. Finally, average call duration dropped across sessions, indicating that experience with temporally patterned noise caused tamarins to compress their calls. Taken together, these results show that in the presence of a predictable, intermittent environmental noise, cotton-top tamarins are able to modify the duration, timing, and amplitude of their calls to avoid acoustic interference.  相似文献   

19.
Common marmosets vocalize phee calls as isolation calls, which seem to facilitate their reunion with family groups. To identify multiple acoustic properties with different time courses, we examined acoustic modulations of phees during different social contexts of isolation. Subject marmosets were totally isolated in one condition, were visually isolated and could exchange vocalizations in another condition, and were visually isolated and subsequently totally isolated in a third condition. We recorded 6,035 phees of 10 male–female marmoset pairs and conducted acoustic analysis. The marmosets frequently vocalized phees that were temporally elongated and louder during isolation, with varying time courses of these changes in acoustic parameters. The vocal rates and sound levels of the phees increased as soon as the marmosets saw their pair mates being taken away, and then gradually calmed down. The phee duration was longer in conditions during which there were no vocal responses from their pair mates. Louder vocalizations are conspicuous and seem to be effective for long‐distance transmission, whereas shorter call duration during vocal exchanges might avoid possible vocal overlap between mates. Am. J. Primatol. 72:681–688, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The vocal repertoires of nonhuman primates have long been thought to be invariable across populations and not to result from vocal learning. However, increasing evidence suggests that learning does influence vocal production in nonhuman primates, and that several species modify the structure of their calls in response to social or environmental influences. Vocal usage learning refers to the process whereby an individual learns in which circumstances to produce a certain call type, whereas vocal production learning refers to the process in which signals get modified as the result of individual experiences. Common marmosets (Callithrix jacchus) show socially mediated vocal plasticity as adults and during vocal development. This propensity to engage in simple forms of vocal production learning (accommodation) should produce population-level differences in call structure. To test this prediction, we compared the vocalizations of three captive populations of common marmosets. We analyzed the acoustic structure of 1337 phee calls, 461 trills, and 3611 food calls and compared them with a permutated discriminant function analysis. We found that all call types differed significantly between the three populations, and 76–98% of the calls were correctly classified. As physical differences in body mass and environmental differences between colonies could not explain the call differences, we conclude that vocal accommodation is the most likely explanation for the differences in call structure. This will allow us to further investigate the role and importance of vocal learning in a species increasingly used to study vocal learning and language evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号