首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
DFF40/CAD endonuclease is primarily responsible for internucleosomal DNA cleavage during the terminal stages of apoptosis. The nuclease specifically introduces DNA double strand breaks into chromatin substrates. Here we performed a detailed study on the specificity of the nuclease using synthetic single-stranded and double-stranded ribo- and deoxyribo-oligonucleotides as substrates. We have found that neither single-stranded DNA, single-stranded RNA, double-stranded RNA nor RNA–DNA heteroduplexes are cleaved by the DFF40/CAD nuclease. Noteworthy, all types of oligonucleotides that are not cleaved by the nuclease inhibit cleavage of double-stranded DNA. We have also observed that in cells undergoing apoptosis in vivo neither the activation of DFF40/CAD nor oligonucleosomal chromatin fragmentation was temporally correlated with either total cellular or nuclear RNA degradation. We conclude that DFF40/CAD is exclusively specific for double-stranded DNA. Jakub Hanus and Magdalena Kalinowska-Herok contributed equally to the work.  相似文献   

2.
To continue elucidation of the biochemical and molecular pathways involved in the induction of apoptosis in granulosa cells (GC) of ovarian follicles destined for atresia, we characterized the occurrence and protease modulation of high and low molecular weight (MW) DNA fragmentation during rat GC death. Atresia of ovarian follicles, occurring either spontaneously in vivo or induced in vitro, was associated with both high MW and internucleosomal (low MW) DNA cleavage. Incubation of follicles in the presence of a putative irreversible and non-competitive inhibitor of caspase-1 (interleukin-1beta-converting enzyme or ICE), sodium aurothiomalate (SAM), completely prevented internucleosomal, but not high MW, DNA cleavage. As reported previously, morphological features of apoptosis (pyknosis, cellular condensation) and atresia (granulosa cell disorganization, oocyte pseudomaturation) remained detectable in SAM-treated follicles. The potential involvement of proteases in endonuclease activation was further analyzed in cell-free assays using nuclei from both GC (which autodigest their DNA) and HeLa cells (HC, which do not autodigest their DNA unless incubated with extracts prepared from other cell types). Crude cytoplasmic extracts prepared from GC induced both high MW and internucleosomal DNA cleavage in HC nuclei. The induction of low, but not high, MW DNA cleavage in HC nuclei by GC extracts was suppressed by pretreatment of the extracts with SAM or with any one of the serine protease inhibitors, dichloroisocoumarin (DCI), N-tosyl-L-leucylchloromethylketone (TLCK) or N-tosyl-L-phenylchloromethylketone (TPCK). Interestingly, SAM and DCI also prevented cation-induced low MW DNA fragmentation in GC nuclei; however, TLCK and TPCK were without effect. Our results support a role for cytoplasmic and nuclear serine proteases in the activation of the endonuclease(s) responsible for internucleosomal DNA cleavage during apoptosis.  相似文献   

3.
The irreversible inhibitor of chymotrypsin-like serine proteases, N-tosyl –L-phenylalanine chloromethylketone (TPCK), was shown to prevent internucleosomal DNA cleavage caused by inducers of apoptosis. The pro-apoptotic properties of TPCK have been studied less thoroughly. The aim of the present study was to investigate the pro- and anti-apoptotic activities of TPCK on HL-60 cells and compare them with the actions of the mitochondrial electron transport inhibitor antimycin A (AMA). The results showed that TPCK alone caused activation of cell cycle checkpoints, mitochondrial cytochrome c release, caspase-3 activation, and chromatin condensation. Caspase-8 was not required for cytochrome c release but was crucial to caspase-3 activation. TPCK synergistically enhanced AMA-induced cytochrome c release and caspase-3 activation while completely blocking AMA-induced internucleosomal DNA fragmentation for at least 8 hours. Rather than blocking AMA-induced DNA fragmentation, the general serine protease inhibitor 4-(2-aminoethyl)-benzenesulphonyl fluoride (AEBSF) actually enhanced it. The pro-apoptotic effect of TPCK may be due to activation of cell cycle checkpoints via inhibition of the proteasome. The apoptotic pathways activated by TPCK and AMA probably converge at the level of the mitochondria. The mode by which TPCK prevents internucleosomal DNA fragmentation is probably not through serine protease inhibition.  相似文献   

4.
Previously, we have purified three distinct DNases from spermatozoa of sea urchin Strongylocentrotus intermedius and we suppose the role of Ca2+, Mg2+-dependent DNase (Ca, Mg-DNase) in apoptosis of spermatozoa. Two-headed sphingolipid rhizochalin (Rhz) induced characteristic apoptotic nuclear chromatin changes, internucleosomal DNA cleavage, and activation of caspase-9, caspase-8, and caspase-3 in spermatozoa as was shown by fluorescence Hoechst 33342/PI/FDA analysis, DNA fragmentation assay, and fluorescence caspase inhibitors FAM-LEHD-fmk, FAM-IETD-fmk, and FAM-DEVD-fmk, respectively. Inhibitor of caspase-3 z-DEVD-fmk subdued Rhz-induced internucleosomal ladder formation, which confirmed the major role of caspase-3 in apoptotic DNA cleavage probably through Ca, Mg-DNase activation. Participation of sea urchin Ca, Mg-DNase in apoptosis of spermatozoa was demonstrated by ions Zn2+ blocking of Rhz-induced DNA fragmentation due to direct inhibition of the Ca, Mg-DNase and internucleosomal cleavage of HeLa S and Vero E6 cell nuclei chromatin by highly purified Ca, Mg-DNase.  相似文献   

5.
Endonuclease G (endoG) is released from mitochondria during apoptosis and is in part responsible for internucleosomal DNA cleavage. Here we report the action of the purified human recombinant form of this endonuclease on naked DNA and chromatin substrates. The addition of the protein to isolated nuclei from non-apoptotic cells first induces higher order chromatin cleavage into DNA fragments > or = 50 kb in length, followed by inter- and intranucleosomal DNA cleavages with products possessing significant internal single-stranded nicks spaced at nucleosomal ( approximately 190 bases) and subnucleosomal ( approximately 10 bases) periodicities. We demonstrate that both exonucleases and DNase I stimulate the ability of endoG to generate double-stranded DNA cleavage products at physiological ionic strengths, suggesting that these activities work in concert with endoG in apoptotic cells to ensure efficient DNA breakdown.  相似文献   

6.
Nuclear events such as chromatin condensation, DNA cleavage at internucleosomal sites, and histone release from chromatin are recognized as hallmarks of apoptosis. However, there is no complete understanding of the molecular events underlying these changes. It is likely that epigenetic changes such as DNA methylation and histone modifications that are involved in chromatin dynamics and structure are also involved in the nuclear events described. In this report we have shown that apoptosis is associated with global DNA hypomethylation and histone deacetylation events in leukemia cells. Most importantly, we have observed a particular epigenetic signature for early apoptosis defined by a release of hypoacetylated and trimethylated histone H4 and internucleosomal fragmented DNA that is hypermethylated and originates from perinuclear heterochromatin. These findings provide one of the first links between apoptotic nuclear events and epigenetic markers.  相似文献   

7.
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks.  相似文献   

8.
Internucleosomal DNA cleavage is the key molecular event of the cytolytic phase of glucocorticoid-induced lymphocytolysis. We find that novobiocin, the topoisomerase II inhibitor, is a potent inducer of in vivo internucleosomal DNA cleavage in human CEM lymphocytes. This in vivo effect is very rapid, time- and dose-dependent, requires cellular integrity, and does not require de novo protein synthesis. Recently our data (Alnemri, E. S., and Litwack, G. (1989) J. Biol. Chem. 264, 4104-4111) suggested that activation of DNA cleavage in CEM-C7 lymphocytes by glucocorticoids is independent of calcium uptake. Similarly, the novobiocin effect is also independent of calcium uptake and does not occur in isolated CEM nuclei or in CEM cells treated previously with the divalent cation ionophore A23187. Internucleosomal DNA cleavage induced by novobiocin or glucocorticoid generates blunt-ended double-stranded DNA fragments possessing 3'-hydroxyls and 5'-phosphates. As demonstrated by gel retardation analysis and DNase I footprinting, novobiocin causes the disruption and unfolding of an in vitro reconstituted mononucleosome so that it becomes more susceptible to DNase I cleavage. Our data suggest that 1) novobiocin rapid activation of internucleosomal DNA cleavage and chromatin changes in CEM lymphocytes are molecular features of apoptosis or programmed cell death. 2) CEM lymphocytes apparently do not express a Ca2(+)-dependent endonuclease. 3) The mechanism(s) of glucocorticoid or novobiocin-induced DNA cleavage in CEM lymphocytes involves activation of a constitutive non Ca2(+)-dependent endonuclease. We propose that the majority of nuclear chromatin is maintained in a highly compact and charge-neutralized state and that disruption of this highly ordered structure, directly by novobiocin or indirectly by glucocorticoid, may lead to the exposure and unmasking of internucleosomal linker DNA regions which are substrates for a constitutive non-Ca2(+)-dependent endonuclease.  相似文献   

9.
A Rasola  D Farahi Far  P Hofman  B Rossi 《FASEB journal》1999,13(13):1711-1723
The heterodimeric DNA fragmentation factor (DFF) is responsible for DNA degradation into nucleosomal units during apoptosis. This process needs the caspase-dependent release of ICAD/DFF-45, the inhibitory subunit of DFF. Here we report that triggering apoptosis via a hyperosmotic shock in hematopoietic cells causes the appearance of mitochondrial and cytosolic alterations, activation of caspases, chromatin condensation, nuclear disruption, and DNA fragmentation. However, oligonucleosomal but not high molecular weight (50-150 kb) DNA cleavage is abolished if Cl(-) efflux is prevented by using NaCl to raise extracellular osmolarity or by Cl(-) channel blockers, even when apoptosis is initiated by other agents (staurosporine, anti-Fas antibody). In these conditions, all the apoptosis hallmarks investigated remain detectable, including the cleavage of ICAD/DFF-45. In vitro assays with lysates of cells in which Cl(-) efflux is blocked confirm the lack of internucleosomal DNA degradation. These findings establish that neither caspase activation nor ICAD/DFF-45 processing per se is sufficient to induce oligonucleosomal DNA fragmentation and that high molecular weight DNA degradation and chromatin condensation appear independently of it. Finally, they suggest that Cl(-) efflux is a necessary cofactor that intervenes specifically in the activation of the DFF endonuclease.  相似文献   

10.
DNA fragmentation and nuclear condensation are key features in the regulated cell death of higher animal cells. Nuclear death also occurs as part of a developmentally programmed process during the sexual life cycle of the unicellular organismTetrahymena.We examined the regulation of nuclear death and the relationship between DNA fragmentation and chromatin condensation in this model system. Nuclear death is accompanied by DNA digestion to low-molecular-weight oligonucleosomal-length fragments, in agree- ment with a previous study [17], indicating an endonuclease-like activity typical of apoptosis in higher organisms. Actinomycin D and cycloheximide block DNA digestion as well as nuclear condensation suggesting that nuclear death is under genetic regulation. DNA digestion is completely blocked by aurin, a general nuclease inhibitor. In addition, when DNA fragmentation is blocked, nuclear condensation also fails to occur. Moreover, a kinetic analysis of DNA breakdown, using agarose gels, shows that some DNA digestion occurs before nuclear condensation has taken place. Thus the initiation of DNA digestion may provide conditions necessary for nuclear condensation. Temporary inhibition of nuclear death aborts the death program since after removal of inhibitors cells revert to a vegetative pathway without having eliminated the old or developed the new macronucleus. Zn2+and EGTA, both of which inhibit apoptosis in some cell types, fail to prevent nuclear condensation or DNA digestion inTetrahymena,suggesting a requirement here for an endonuclease which is Ca2+-independent and Zn2+-insensitive. With the TUNEL assay, DNA breakdown is detected exclusively in the condensed macronucleus (and occasional micronuclei identified as degenerating haploid products of meiosis), but not in precondensed macronuclei. These studies show that apoptotic-like DNA fragmentation occurs after condensation of the degenerating macronucleus. However, early DNA digestion may be critical for nuclear condensation and subsequent degeneration.  相似文献   

11.
We studied the role of proteases in apoptosis using a cell-free system prepared from a human leukemia cell line. HL60 cells are p53 null and extremely sensitive to a variety of apoptotic stimuli including DNA damage induced by the topoisomerase I inhibitor, camptothecin. We measured DNA fragmentation induced in isolated nuclei by cytosolic extracts using a filter elution assay. Cytosol from camptothecin-treated HL60 cells induced internucleosomal DNA fragmentation in nuclei from untreated cells. This fragmentation was suppressed by serine protease inhibitors. Serine proteases (trypsin, endoproteinase Glu-C, chymotrypsin A, and proteinase K) and papain by themselves induced DNA fragmentation in naive nuclei. This effect was enhanced in the presence of cytosol from untreated cells. Cysteine protease inhibitors (E-64, leupeptin, Ac-YVAD-CHO [ICE inhibitor]) did not affect camptothecin-induced DNA fragmentation. The apopain/Yama inhibitor, Ac-DEVD-CHO, and the proteasome inhibitor, MG-132, were also inactive both in the cell-free system and in whole cells. Interleukin-1β converting enzyme (ICE) or human immunodeficiency virus protease failed to induce DNA fragmentation in naive nuclei. Together, these results suggest that DNA damage activates serine protease(s) which in turn activate(s) nuclear endonuclease(s) during apoptosis in HL60 cells.  相似文献   

12.
Genetically programmed (apoptotic) cell death plays a key role in cell and tissue homeostasis and in pathogenesis of various diseases. However, the mechanisms involved in apoptotic cell death are poorly understood. At present, the role of proteases in key events of apoptosis is intensively studied and discussed and the involvement of various proteolytic enzymes in the induction and development of the cell death is well-recognized. Proteases of various classes participating in apoptosis have been identified as well as some substrates of these proteases whose cleavage is critical to cell viability; specific protease inhibitors which prevent the cell death have been synthesized. This review summarizes new data on proteolytic enzymes involved in apoptosis and considers the mechanisms of activation of proteases upon induction of apoptosis and the pathways of their involvement in the cell death. The participation of nuclear proteolytic enzymes in the destabilization of chromatin structure and regulation of DNA fragmentation by endonucleases in apoptotic cells is discussed.  相似文献   

13.
Characteristic steps during cellular apoptosis are the induction of chromatin condensation and subsequent DNA fragmentation, finally leading to the formation of oligomers of nucleosomes. We have examined the kinetics and local distribution of this nucleosomal fragmentation within different genomic regions. For the induction of apoptosis, HL60 cells were treated with the water-soluble camptothecin derivative topotecan (a topoisomerase I inhibitor). The genomic origin of the fragments was analysed by Southern blot hybridisation of the cleaved DNA. In these experiments we observed similar hybridisation patterns of the fragmented DNA, indicating a random and synchronous cleavage of the nuclear chromatin. However, hybridisation with a telomeric probe revealed that, in contrast to the other analysed genomic regions, the telomeric chromatin was not cleaved into nucleosomal fragments despite our observation that the telomeric DNA in HL60 cells is organised in nucleosomes. We determined just a minor shortening of the telomeric repeats early during apoptosis. These observations suggest that telomeric chromatin is excluded from internucleosomal cleavage during apoptosis.  相似文献   

14.
Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events.  相似文献   

15.
The role of caspase proteases in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis of human promyelocytic HL-60 cells was examined. Treatment of HL-60 cells with micromolar concentrations of CCCP resulted in cell death, with typical apoptotic features such as chromatin condensation, formation of apoptotic bodies, nucleosomal fragmentation of DNA and a distinct increase in caspase-3 activity. The results, however, indicated that full caspase-3 inhibition by the selective inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone (Z-DEVD-FMK) did not prevent cell death, nor did it affect the manifestation of apoptotic hallmarks, including apoptotic bodies formation and nucleosomal DNA fragmentation. The only distinct effect that Z-DEVD-FMK exhibited was to retard the disruption of the plasma membrane. We therefore assume that caspase-3 activity itself is not essential for the manifestation of apoptotic features mentioned above. Similarly, the pan-specific caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not prevent cell death. On the contrary, Z-VAD-FMK completely prevented DNA cleavage and apoptotic body formation, but it failed to completely counteract chromatin condensation. Thus, in the presence of Z-VAD-FMK, application of CCCP concentrations that otherwise induced apoptosis, resulted in the appearance of two morphologically different groups of dead cells with intact DNA. The first group included cells with necrotic-like nuclear morphology, and therefore could be taken as being "truly" necrotic in nature, because they had intact DNA. The cells of the second group formed small single-spherical nuclei with condensed chromatin. In spite of having intact DNA, they could not be taken as "truly" necrotic cells. It is evident that in the experimental system, caspase proteases play an essential role in the formation of apoptotic bodies and in the cleavage of nucleosomal DNA, but not in the condensation of chromatin. Therefore, it is likely that the choice between cell death modalities is not solely a matter of the caspase proteases present.  相似文献   

16.
Programmed cell death, apoptosis, involves very distinctive changes within the target cell nucleus, including margination of the chromatin, DNA fragmentation and breakdown of the nuclear envelope. Cytolytic granule-mediated target cell apoptosis is effected, in part, through synergistic action of the membrane-acting protein perforin and serine proteases, such as granzymes A or B. Recent work using confocal laser scanning microscopy as well as other techniques supports the idea that perforin-dependent translocation of granzymes to the nucleus of target cells plays a central role in effecting the nuclear changes associated with apoptosis. In vitro experiments indicate that granzyme nuclear import follows a novel pathway, being independent of ATP, not inhibitable by non-hydrolysable GTP analogues and involving binding within the nucleus, unlike conventional signal- dependent nuclear protein import. In intact cells, perforin-dependent nuclear entry of granzymes precedes the nuclear events of apoptosis such as DNA fragmentation and nuclear envelope breakdown; prevention of granzyme nuclear translocation through bcl2 overexpression or treatment of target cells with inhibitors of caspase activation blocks these events. Nuclear localization of granzymes thus appears to be central to induction of the nuclear changes associated with cytolytic granule-mediated apoptosis.  相似文献   

17.
IL-1β converting enzyme (ICE) family cysteine proteases are subdivided into three groups; ICE-, CPP32-, and Ich-1–like proteases. In Fas-induced apoptosis, activation of ICE-like proteases is followed by activation of CPP32-like proteases which is thought to be essential for execution of the cell death. It was recently reported that two subfamily members of the mitogen-activated protein kinase superfamily, JNK/SAPK and p38, are activated during Fas-induced apoptosis. Here, we have shown that MKK7, but not SEK1/ MKK4, is activated by Fas as an activator for JNK/ SAPK and that MKK6 is a major activator for p38 in Fas signaling. Then, to dissect various cellular responses induced by Fas, we used several peptide inhibitors for ICE family proteases in Fas-treated Jurkat cells and KB cells. While Z-VAD-FK which inhibited almost all the Fas-induced cellular responses blocked the activation of JNK/SAPK and p38, Ac-DEVD-CHO and Z-DEVD-FK, specific inhibitors for CPP32-like proteases, which inhibited the Fas-induced chromatin condensation and DNA fragmentation did not block the activation of JNK/SAPK and p38. Interestingly, these DEVD-type inhibitors did not block the Fas-induced morphological changes (cell shrinkage and surface blebbing), induction of Apo2.7 antigen, or the cell death (as assessed by the dye exclusion ability). These results suggest that the Fas-induced activation of the JNK/SAPK and p38 signaling pathways does not require CPP32-like proteases and that CPP32-like proteases, although essential for apoptotic nuclear events (such as chromatin condensation and DNA fragmentation), are not required for other apoptotic events in the cytoplasm or the cell death itself. Thus, the Fas signaling pathway diverges into multiple, separate processes, each of which may be responsible for part of the apoptotic cellular responses.  相似文献   

18.
We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVADfmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.  相似文献   

19.
CD45 is a type I transmembrane molecule with phosphatase activity which comprises up to 10% of the cell surface area in nucleated haematopoietic cells. We have previously demonstrated the absence of nuclear apoptosis in CD45-negative T cells after chemical-induced apoptosis. The aim of this study was to characterize the role of CD45 in nuclear apoptosis. In contrast to wild type CD45-positive T cells, the CD45-deficient T cell lines are resistant to the induction of DNA fragmentation and chromatin condensation following tributyltin (TBT) or H2O2 exposure, but not to cycloheximide-induced apoptosis. CD45 transfection in deficient cell lines led to the restoration of chromatin condensation and DNA fragmentation following TBT exposure. In both CD45-positive and negative T cell lines, TBT exposure mediates intracellular calcium mobilization, caspase-3 activation and DFF45 cleavage. Moreover, DNA fragmentation was also induced by TBT in cells deficient in expression of p56lck, ZAP-70 and SHP-1. Subcellular partitioning showed a decrease in nuclear localisation of caspase-3 and DFF40. Together, these results demonstrate for the first time, that CD45 expression plays a key role in internucleosomal DNA fragmentation and chromatin condensation processes during apoptosis. CD45 activity or its substrates’ activity, appears to be located downstream of caspase-3 activation and plays a role in retention of DFF40 in the nucleus. Philippe Desharnais and Geneviève Dupéré-Minier have contributed equally to this work.  相似文献   

20.
In the current study the internucleosomal DNA cleavage activity associated with apoptosis was investigated in avian thymocytes. Thymocyte nuclear proteins from glucocorticoid-treated chickens were incubated with chicken red blood cell (cRBC) nuclei, and DNA degradation was analyzed by agarose gel electrophoresis and fluorescence-activated flow cytometry. The thymocyte nuclear extract contained an endonuclease activity that degraded cRBC chromatin at internucleosomal sites as detected by agarose gel electrophoresis. Flow cytometry analysis of cRBC nuclei that were treated with thymocyte nuclear proteins demonstrated a loss of cellular DNA as a function of the amount of added nuclease activity. Furthermore, it was demonstrated that the thymocyte nuclear extract contained a nuclease activity that was capable of degrading radiolabelled naked 32P-DNA into acid soluble DNA fragments. All three assay methods demonstrate that the thymocyte nuclease activity can be inhibited by EDTA, zinc ions and the nuclease inhibitor aurintricarboxylic acid. Based on the analysis of cofactor requirement of this nuclease activity and its susceptibility to inhibitors, the endonuclease activity present in avian apoptotic thymocytes appears to be identical to the mammalian counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号