首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Numerous studies have reported the effects of learning or experience on parasitoid host preference and location. However, the integration of pre‐imaginal and adult experiences on the subsequent host preference and adult/offspring performance has been rarely tested in host–parasite interactions. 2. We present direct evidence that theses two kinds of experiences affect host preference and related fitness in the polyphagous parasitoid, Scleroderma guani. Two colonies of parasitoids were reared on Monochamus alternatus and Saperda populnea (Cerambycidae: Lamiinae). Individuals from the two colonies were given host‐switching experience for one generation (pre‐imaginal experience) while other individuals were given prior ovipositing experience on the two species, respectively (adult experience). 3. Scleroderma guani females demonstrated that their experiences determined adult behavioural responses and their subsequent performance to hosts. Females maximised both adult fitness (fecundity and longevity) and offspring fitness (survival and sex ratio) when they encountered hosts similar to their maternal hosts. Behavioural plasticity in host choice was affected by adult experience, resulting in improved adult feeding and ovipositing behaviour and further modifying adult fecundity and the offspring sex ratio. There was a positive correlation between oviposition preference and adult fecundity. 4. The results indicated that S. guani exhibited positive preference–performance correlations. This is most likely due to an adaptation to maternal hosts over multiple generations. However, foraging potential of adults to available cues from hosts may be driven quickly by an experience‐induced learning process rather than by natural selection processes shaped over many generations.  相似文献   

2.
A large proportion of phytophagous insect species are specialised on one or a few host plants, and female host plant preference is predicted to be tightly linked to high larval survival and performance on the preferred plant(s). Specialisation is likely favoured by selection under stable circumstances, since different host plant species are likely to differ in suitability—a pattern usually explained by the “trade-off hypothesis”, which posits that increased performance on a given plant comes at a cost of decreased performance on other plants. Host plant specialisation is also ascribed an important role in host shift speciation, where different incipient species specialise on different host plants. Hence, it is important to determine the role of host plants when studying species divergence and niche partitioning between closely related species, such as the butterfly species pair Leptidea sinapis and Leptidea reali. In Sweden, Leptidea sinapis is a habitat generalist, appearing in both forests and meadows, whereas Leptidea reali is specialised on meadows. Here, we study the female preference and larval survival and performance in terms of growth rate, pupal weight and development time on the seven most-utilised host plants. Both species showed similar host plant rank orders, and larvae survived and performed equally well on most plants with the exceptions of two rarely utilised forest plants. We therefore conclude that differences in preference or performance on plants from the two habitats do not drive, or maintain, niche separation, and we argue that the results of this study do not support the trade-off hypothesis for host plant specialisation, since the host plant generalist Leptidea sinapis survived and performed as well on the most preferred meadow host plant Lathyrus pratensis as did Leptidea reali although the generalist species also includes other plants in its host range. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
1. To elucidate the factors responsible for the evolution of host specialisation, prey capture performance in hatchlings of two sibling ladybird species, Harmonia yedoensis and H. axyridis, feeding on four aphid species was examined. Harmonia yedoensis is a specialist predator that preys only on pine aphids in the field, whereas H. axyridis is a generalist predator with a broad prey range. 2. In H. yedoensis, sibling cannibalism in each clutch was intense and predation against pine aphid as well as other aphid species was moderately successful. In contrast, the predation success rate of H. axyridis against pine aphid was quite low. 3. Moreover, it was experimentally shown that increased maternal investment enhanced prey capture performance against pine aphid in H. yedoensis but not in H. axyridis hatchlings, despite their increased body size due to maternal investment. 4. In addition, morphological and behavioural analysis showed that hatchlings of H. yedoensis had longer legs and a larger head capsule size and could walk faster than H. axyridis. 5. In summary, the interactive effects between a large amount of maternal investment and morphological specialisation of the first instars may enable H. yedoensis to capture the pine aphid efficiently, a highly elusive prey for ladybird hatchlings. The ability of H. yedoensis to utilise the three other aphid species in addition to the pine aphid suggests that a trade‐off in prey capture performance is not the main factor in the host specialisation of H. yedoensis.  相似文献   

4.
The great variability of the aphid life cycle and their tendency for host alternation gives rise to aphid clones and morphs. Inter‐ and intraclonal variability may be observed in the responses of aphids to various environmental factors. In this study we aimed to evaluate the influence of intrinsic factors (clone and morph type) on the intrinsic rate of increase (rm) of the English grain aphid, Sitobion avenae (Fabricius), and the bird cherry‐oat aphid, Rhopalosiphum padi (Linnaeus). For each species four apterous clones were collected from established laboratory colonies and compared to assess their relative fitness on high‐ and low‐nitrogen wheat plants under laboratory conditions. The clones had significantly different intrinsic rates of increase on high‐ and low‐nitrogen plants. All R. padi clones had a higher intrinsic rate of increase and mean relative growth rate than S. avenae. Experiments were also conducted to compare the mean fecundity of apterous and alate morphs of S. avenae and R. padi clones on high‐ and low‐nitrogen wheat plants. On high‐nitrogen plants the apterous morphs of S. avenae clones had significantly higher mean fecundity than alate morphs. There were no significant differences between the mean fecundity of alate morphs of the same species on high‐ and low‐nitrogen plants. The results support the idea of better fitness of specific clones/morphs on certain host plants due to higher and lower intrinsic rates of increase.  相似文献   

5.
Polyphagous insect herbivores experience different selection pressures on their various host plant species. How this affects population divergence and speciation may be influenced by the bacterial endosymbionts that many harbor. Here, we study the population structure and symbiont community of the pea aphid (Acyrthosiphon pisum), which feeds on a range of legume species and is known to form genetically differentiated host-adapted populations. Aphids were collected from eight legume genera in England and Germany. Extensive host plant associated differentiation was observed with this collection of pea aphids comprising nine genetic clusters, each of which could be associated with a specific food plant. Compared to host plant, geography contributed little to genetic differentiation. The genetic clusters were differentiated to varying degrees, but this did not correlate with their degree of divergence in host use. We surveyed the pea aphid clones for the presence of six facultative (secondary) bacterial endosymbionts and found they were nonrandomly distributed across the aphid genetic clusters and this distribution was similar in the two countries. Aphid clones on average carried 1.4 species of secondary symbiont with those associated with Lathyrus having significantly fewer. The results are interpreted in the light of the evolution of specialization and ecological speciation.  相似文献   

6.
Ecological specialisation on different host plants occurs frequently among phytophagous insects and is normally assumed to have a genetic basis. However, insects often carry microbial symbionts, which may play a role in the evolution of specialisation. The bacterium Regiella insecticola is a facultative symbiont of pea aphids (Acyrthosiphon pisum) where it is found most frequently in aphid clones feeding on Trifolium giving rise to the hypothesis that it may improve aphid performance on this plant. A study in which R. insecticola was eliminated from a single naturally infected aphid clone supported the hypothesis, but a second involving two aphid clones did not find the same effect. We created a series of new pea aphid–R. insecticola associations by injecting different strains of bacteria into five aphid clones uninfected by symbionts. For all aphid clones, the bacteria decreased the rate at which aphids accepted Vicia faba as a food plant and reduced performance on this plant. Their effect on aphids given Trifolium pratense was more complex: R. insecticola negatively affected acceptance by all aphid clones, had no effect on the performance of four aphid clones, but increased performance of a fifth, thus demonstrating genetic variation in the effect of R. insecticola on pea aphid host use. We discuss how these results may explain the distribution and frequency of this symbiont across different aphid populations. Julia Ferrari and Claire L. Scarborough contributed equally to the work.  相似文献   

7.
The effects of two bacterial endosymbionts, designated PASS and PAR, were evaluated on the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera:Aphididae), in which they occur facultatively, and on the blue alfalfa aphid, A. kondoi Shinji, in which these bacteria have not been found in natural populations. Subclones of pea aphids and blue alfalfa aphids, derived from parent aphid clones that did not contain PASS or PAR, were infected with one or both bacteria, generating PASS- and/or PAR-positive subclones with minimal genetic differences from the parent clones. Under laboratory conditions at 20 °C, PAR consistently reduced the fecundity (by between 19 and 60%) of subclones derived from three different parent pea aphid clones on bur clover, Medicago hispida Gaertn. PAR had intermediate effects on pea aphids reared on sweet pea, Lathyrus odoratus L., and had no significant effect on pea aphids on alfalfa, Medicago sativa L. The effect of PASS was either neutral or negative, depending on parent clone as well as host plant. Also at 20 °C, PASS reduced fecundity (70–77%) and longevity (40–48%), and increased the age of first reproduction (by up to 1.5 days) of blue alfalfa aphid reared on alfalfa and clover. PAR had a less dramatic effect (e.g., 30–39% reduction in fecundity) on these traits of blue alfalfa aphid. In contrast, PAR and PASS increased the fitness of pea aphid subclones of one parent clone reared for three generations at 25 °C on each of the three test plants. Without facultative bacteria, fecundity of the parent clone was reduced to a mean total of < 6 offspring per adult at this elevated temperature, but with PASS or PAR, mean total fecundity of its subclones was > 35. However, this ameliorative effect of facultative bacteria at 25 °C was not found for two other sets of parent clones and their derived subclones. Alate production in pea aphids was significantly increased in large populations of two PASS- and PAR-positive subclones relative to their parent clones. Attempts to transmit PASS or PAR horizontally, i.e., from aphid to aphid via feeding on host plants (bur clover), were unsuccessful.  相似文献   

8.
Aphids possess several facultative bacterial symbionts that have important effects on their hosts'' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.  相似文献   

9.
Habitat choice plays a critical role in the processes of host range evolution, specialization, and ecological speciation. Pea aphid, Acyrthosiphon pisum, populations from alfalfa and red clover in eastern North America are known to be genetically differentiated and show genetic preferences for the appropriate host plant. This species feeds on many more hosts, and here we report a study of the genetic variation in host plant preference within and between pea aphid populations collected from eight genera of host plants in southeastern England. Most host-associated populations show a strong, genetically based preference for the host plant from which they were collected. Only in one case (populations from Vicia and Trifolium) was there little difference in the plant preference spectrum between populations. All populations showed a significant secondary preference for the plant on which all the aphid lines were reared: broad bean, Vicia faba, previously suggested to be a "universal host" for pea aphids. Of the total genetic variance in host preference within our sample, 61% could be attributed to preference for the collection host plant and a further 9% to systematic differences in secondary preferences with the residual representing within-population genetic variation between clones. We discuss how a combination of host plant preference and mating on the host plant may promote local adaptation and possibly ecological speciation, and whether a widely accepted host could oppose speciation by mediating gene flow between different populations.  相似文献   

10.
Biodiversity has both intraspecific and interspecific components, and speciation is the process through which the former is converted to the latter. Ecological factors can cause population divergence and differentiation. In this paper, we investigate the interplay between top-down effects from natural enemies and bottom-up effects from host plants in an aphid model system. Pea aphids, Acyrthosiphon pisum, are known to form host-adapted races on Trifolium and Medicago. Here, replicate clones of pea aphids collected from a broader set of five host plant genera are screened for their performance on the same set of host plants and also for their resistance to four natural enemies: the parasitoids Aphidius eadyi and Aphidius ervi, and the entomopathogenic fungi Pandora (=Erynia) neoaphidis and Zoophthora phalloides. The populations showed clear adaptation to their host plant from which they were collected, but they also performed well on Vicia. Performance on the other three plant species was poor. The aphid population collected from Lotus was significantly better at defending itself against the parasitoid A. eadyi, and there was a tendency for the clones from Trifolium to be resistant to the pathogen P. neoaphidis. These patterns highlight the importance of understanding the ecological processes influencing speciation in the context of the web of ecological adaptations within which a species is embedded.  相似文献   

11.
1. Specialisation in host plant use is strongly correlated with speciation in many plant‐feeding insects. Specialised taxa, however, could be restricted in host range due to limits in ecological availability of host plant species rather than trade‐offs in using alternate host species. 2. Moths in the genus Prodoxus are extreme specialists on Yucca and speciation is closely tied to host plant shifts. However, many Yucca ranges are allopatric. This study examined whether the bogus yucca moth Prodoxus decipiens is limited in host range because of biogeographic factors or due to differences in the characteristics of host plant species. 3. In a common garden, local P. decipiens moths that use Yucca filamentosa were exposed to individuals of five Yucca species, two that are known hosts of P. decipiens in other parts of its range and three that are used by its sister species, Prodoxus quinquepunctellus. 4. Local moths were attracted to flowers of all Yucca species and females attempted oviposition in the flowering stalks of all species. However, larvae successfully completed development to diapause in only one of the five host plant species. Larval development on non‐natal Yucca species was significantly reduced compared with the local host. 5. The results suggest that differences in host plant characteristics among Yucca species would result in strong natural selection during a host shift. Thus, specialisation in host plant use is probably due to trade‐offs involved with using novel host plant species as well as ecological availability.  相似文献   

12.
Nysius natalensis Evans (Hemiptera: Orsillidae) is a pest of sunflower in South Africa. Adults invade sunflower fields from their weedy hosts which occur inside crop fields and on surrounding headlands. The host plant suitability for survival and reproduction as well as the effect of within‐generation host switching was studied on different wild host plants and sunflower. Life history parameters used to assess host plant suitability were F1 adult survival, pre‐oviposition period, fecundity, and longevity. Nymphs and adults were provided with stems and seeds of five host plants, viz., Amaranthus hybridus L. (Amaranthaceae), Portulaca oleracea L. (Portulacaceae), Chenopodium album L. (Chenopodiaceae), Conyza albida Spreng. (Asteraceae), and sunflower, Helianthus annuus L. (Asteraceae). Nymphs were reared on crushed seed of the five plant species. After completion of the nymphal stage, emerging adults of each host plant group were provided with seed of a different host plant species for food. Adults did not survive long on stems only and very few eggs were laid. Seeds of the host plant species were shown to be an essential source of nutrients for N. natalensis reproduction, whereas the vegetative plant parts were unsuitable. Nymphal food and host‐plant switching between the nymphal and adult stages significantly affected the pre‐oviposition period. Nymphal and adult food source also affected female longevity. The number of eggs laid was not influenced by nymphal food, but was influenced by adult food and the switch between nymphal and adult food. The comparative attractiveness of sunflower and wild host plants for oviposition was also investigated and showed that females preferred to lay eggs on wild host plants, compared with sunflower. These results may explain why N. natalensis will lay their eggs on sunflower after weeds in the vicinity are controlled, or senesce toward the end of the growing season.  相似文献   

13.
Studying antagonistic coevolution between host plants and herbivores is particularly relevant for polyphagous species that can experience a great diversity of host plants with a large range of defenses. Here, we performed experimental evolution with the polyphagous spider mite Tetranychus urticae to detect how mites can exploit host plants. We thus compared on a same host the performance of replicated populations from an ancestral one reared for hundreds of generations on cucumber plants that were shifted to either tomato or cucumber plants. We controlled for maternal effects by rearing females from all replicated populations on either tomato or cucumber leaves, crossing this factor with the host plant in a factorial design. About 24 generations after the host shift and for all individual mites, we measured the following fitness components on tomato leaf fragments: survival at all stages, acceptance of the host plant by juvenile and adult mites, longevity, and female fecundity. The host plant on which mite populations had evolved did not affect the performance of the mites, but only affected their sex ratio. Females that lived on tomato plants for circa 24 generations produced a higher proportion of daughters than did females that lived on cucumber plants. In contrast, maternal effects influenced juvenile survival, acceptance of the host plant by adult mites and female fecundity. Independently of the host plant species on which their population had evolved, females reared on the tomato maternal environment produced offspring that survived better on tomato as juveniles, but accepted less this host plant as adults and had a lower fecundity than did females reared on the cucumber maternal environment. We also found that temporal blocks affected mite dispersal and both female longevity and fecundity. Taken together, our results show that the host plant species can affect critical parameters of population dynamics, and most importantly that maternal and environmental conditions can facilitate colonization and exploitation of a novel host in the polyphagous T. urticae, by affecting dispersal behavior (host acceptance) and female fecundity.  相似文献   

14.
Knowledge on interspecific pre‐ and post‐zygotic isolation mechanisms provides insights into speciation patterns. Using crosses (F1 and backcrosses) of two closely related flea beetles species, Altica fragariae and A. viridicyanea, specialized on different hosts in sympatry, we measured: (a) the type of reproductive isolation and (b) the inheritance mode of preference and host‐specific performance, using a joint‐scaling test. Each species preferred almost exclusively its host plant, creating strong prezygotic isolation between them, and suggesting that speciation may occur at least partly in sympatry. Reproductive isolation was intrinsic between females of A. fragariae and either A. viridicyanea or F1 males, whereas the other crosses showed ecologically dependent reproductive isolation, suggesting ecological speciation. The genetic basis of preference and performance was at least partially independent, and several loci coded for preference, which limits the possibility of sympatric speciation. Hence, both ecological and intrinsic factors may contribute to speciation between these species.  相似文献   

15.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

16.
Liu Z  Scheirs J  Heckel DG 《Oecologia》2012,168(2):459-469
Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers’ oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.  相似文献   

17.
In order to reduce parasite‐induced mortality, hosts may be involved in mutualistic interactions in which the partner contributes to resistance against the parasite. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbours secondary bacterial endosymbionts, some of which have been reported to confer resistance against aphid parasitoids. Although this resistance often results in death of the developing parasitoid larvae, some parasitoid individuals succeed in developing into adults. Whether these individuals suffer from fitness reduction compared to parasitoids developing in pea aphid clones without symbionts has not been tested so far. Using 30 pea aphid clones that differed in their endosymbiont complement, we studied the effects of these endosymbionts on aphid resistance against the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae), host–parasitoid physiological interactions, and fitness of emerging adult parasitoids. The number of symbiont species in an aphid clone was positively correlated with a number of resistance measurements but there were also clear symbiont‐specific effects on the host–parasitoid interaction. As in previous studies, pea aphid clones infected with Hamiltonella defensa Moran et al. showed resistance against the parasitoid. In addition, pea aphid clones infected with Regiella insecticola Moran et al. and co‐infections of H. defensaSpiroplasma, R. insecticolaSpiroplasma, and R. insecticolaH. defensa showed reduced levels of parasitism and mummification. Parasitoids emerging from symbiont‐infected aphid clones often had a longer developmental time and reduced mass. The number of teratocytes was generally lower when parasitoids oviposited in aphid clones with a symbiont complement. Interestingly, unparasitized aphids infected with Serratia symbiotica Moran et al. and R. insecticola had a higher fecundity than unparasitized aphids of uninfected pea aphid clones. We conclude that in addition to conferring resistance, pea aphid symbionts also negatively affect parasitoids that successfully hatch from aphid mummies. Because of the link between aphid resistance and the number of teratocytes, the mechanism underlying resistance by symbiont infection may involve interference with teratocyte development.  相似文献   

18.
Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts.  相似文献   

19.
1. The evolution of host range and preference in phytophagous insects is driven by a female's oviposition choice impacting her offspring's fitness. Analysis of the fitness of progeny on different host plants has commonly been restricted to the performance of immature stages. However, since host use can affect adult size, it is important to measure the ongoing effects of host choice on the resulting imagines. 2. The orange‐tip butterfly, Anthocharis cardamines, shows a strong preference for two host plants in Britain, Alliaria petiolata and Cardamine pratensis, which affect body size. Whilst females exhibit a strong positive size–fecundity relation, the impact of body‐size alteration is unknown in males. In this study, fitness effects of host plant choice for male A. cardamines were examined. 3. Males reared on C. pratensis were smaller and emerged earlier than those reared on A. petiolata, and early‐season males were smaller than late‐season ones in the field. Interestingly, regression analysis indicated that the earlier emergence of small males was a host‐mediated rather than a size‐mediated effect. Small size was associated with reduced male dispersal in a semi‐isolated wild population over a 3‐year period. 4. It is proposed that the earlier emergence associated with C. pratensis has evolved in response to depressed dispersal in isolated/semi‐isolated populations associated with this patchily distributed host. We suggest that adult life‐history traits are important for the maintenance of host range in this species, and offer a critique of Courtney's earlier hypothesis that host range is maintained by time‐limited oviposition behaviour.  相似文献   

20.
The symbiosis between grasses and endophytic fungi is a common phenomenon and can affect herbivore performance through acquired, chemical plant defence by fungal alkaloids. In laboratory experiments, two species of common grass aphids, Rhopalosiphum padi and Metopolophium dirhodum were tested, in a population experiment (on four plant cultivars) and individually (on one plant cultivar) for the effects of the endophyte, Neotyphodium lolii, that forms symbiotic associations with perennial ryegrass Lolium perenne. In the population experiment that lasted for four aphid generations both aphid species showed decreased population sizes when feeding on each of the four endophyte-infected cultivars. Individuals of R. padi tested individually showed reduced adult life span and fecundity when feeding on infected plants. Individuals of M. dirhodum showed no response in any of the traits measured. This suggests that R. padi individuals are more sensitive to endophyte infection than M. dirhodum individuals. However, all infected grass cultivars reduced population sizes of both aphid species over four generations. Therefore, fungal endophytes can reduce populations of aphid herbivores independent of plant cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号